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Vorwort

Das 23. Kolloquium Programmiersprachen und Grundlagen der Programmierung (KPS 2025) findet vom
25. bis zum 28. September 2025 in Feldkirchen-Westerham (Bayern, Deutschland) statt. Die Veranstaltung
dient dem zwanglosen Austausch neuer Ideen und Ergebnissen zu den Themen des Entwurfs und der
Implementierung von Programmiersprachen einerseits sowie den Grundlagen und den Methodiken des
Programmierens andererseits.

Erstmalig 1980 von den Forschungsgruppen der Professoren Friedrich L. Bauer (TU München), Klaus
Indermark (RWTH Aachen) und Hans Langmaack (CAU Kiel) abgehalten, findet das KPS alle zwei Jahre an
unterschiedlichen Orten Deutschlands und Österreichs statt und bietet ein offenes Forum für alle inter-
essierten deutschsprachigen Wissenschaftler:innen. Insbesondere sollen junge Doktorand:innen ermutigt
werden, ihre Arbeiten einem fachkundigen Publikum vorzustellen und mit diesem zu diskutieren.

Vorherige Kolloquien:

2023 Vaals RWTH Aachen
2021 Kiel Uni Kiel
2019 Baiersbronn DHBW Stuttgart
2017 Weimar Uni Jena
2015 Pörtschach am Wörthersee TU Wien
2013 Lutherstadt Wittenberg Uni Halle-Wittenberg
2011 Schloss Raesfeld, Raesfeld Uni Münster
2009 Maria Taferl TU Wien
2007 Timmendorfer Strand Uni Lübeck
2005 Fischbachau LMU München
2004 Freiburg-Munzingen Uni Freiburg
2001 Rurberg in der Eifel RWTH Aachen
1999 Kirchhundem-Heinsberg FernUni Hagen
1997 Avendorf auf Fehmarn Uni Kiel
1995 Alt-Reichenau Uni Passau
1993 Garmisch-Partenkirchen UniBw München
1992 Rothenberge bei Steinfurt Uni Münster
1989 Hirschegg Uni Augsburg
1987 Midlum auf Föhr Uni Kiel
1985 Passau Uni Passau
1982 Altenahr RWTH Aachen
1980 Tannenfelde im Naturpark Aukrug Uni Kiel

Neubiberg, Jänner 2026

Stefan Brunthaler
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LOOL: Low-Overhead, Optimization-Log-Guided Compiler
Fuzzing

FELIX BERLAKOVICH, Universität der Bundeswehr, Germany
FLORIAN SCHWARCZ, Johannes Kepler Universität, Austria
GERGÖ BARANY, Oracle Labs, Austria
HANSPETER MÖSSENBÖCK, Johannes Kepler Universität, Austria
STEFAN BRUNTHALER, Universität der Bundeswehr, Germany

Compiler fuzzing with randomly generated input programs is a powerful technique for finding compiler
crashes and miscompilation bugs. Existing fuzzers are either unguided or guided by low-level coverage metrics
such as code coverage, which incur significant overhead and lack domain-specific context. We present Lool,
an approach for fuzzing compilers with low overhead, guided by optimization log information produced
by the compiler itself. The optimization log tracks program transformations at the method level, providing
context-aware coverage with lower runtime overhead than off-the-shelf code coverage tools. We integrate
Lool with a fuzzer for the GraalVM compiler, using a genetic algorithm to tune code generation parameters
towards infrequently exercised optimizations. Preliminary experiments have identified 30 previously unknown
bugs in the GraalVM compiler.
Additional Key Words and Phrases: fuzzing, JIT compiler, genetic algorithm, GraalVM, optimization log

1 Introduction
Bugs in compilers can have significant impact on users, especially when the symptom is not a crash
but a silent miscompilation. Determining that a suspected program bug is actually a miscompilation
is time-consuming for developers. Hand-written compiler tests typically cover cases engineers
consider during development, but edge cases are often overlooked. Fuzzers can fill this gap by
feeding compilers with automatically generated programs and testing the results for correctness.

Our work concerns testing of the GraalVM compiler, a JIT and AOT compiler for Java and other
languages. While being written entirely in Java protects it from memory safety issues plaguing
C/C++ compilers, GraalVM is not immune to implementation errors leading to miscompilations or
crashes. We developed a compiler fuzzer targeting GraalVM and, in line with related work, found
several previously unknown bugs.

However, the sustained effectiveness of a compiler fuzzer depends on the input code generator’s
capabilities. Certain compiler optimizations require very specific combinations of language features.
A naïve approach using fixed probability distributions for language features leads to marginally
small probabilities of certain combinations occurring, leaving specific optimizations untested.

Code coverage is a popular feedback mechanism for steering fuzzer input generation. However,
for Java software, code coverage has two major drawbacks:

Overhead: Collecting code coverage incurs non-negligible overhead.We observed 17% through-
put decline with JaCoCo coverage.

Loss of context: Existing coverage solutions merge information from compilations of differ-
entmethods, losing the context of which optimizations occurred together during compilation
of the same method.

Based on these observations, we propose Lool, which uses the GraalVM compiler’s optimization
log for coverage feedback. The precise, domain-specific information from the optimization log
Authors’ Contact Information: Felix Berlakovich, Universität der Bundeswehr, Munich, Germany, felix.berlakovich@
unibw.de; Florian Schwarcz, Johannes Kepler Universität, Linz, Austria, florian.schwarcz@jku.at; Gergö Barany, Oracle
Labs, Vienna, Austria, gergo.barany@oracle.com; Hanspeter Mössenböck, Johannes Kepler Universität, Linz, Austria,
hanspeter.moessenboeck@jku.at; Stefan Brunthaler, Universität der Bundeswehr, Munich, Germany, brunthaler@unibw.de.
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guides input generation towards rare or uncovered compiler optimizations. During preliminary
experiments, we found 30 previously unknown bugs in the GraalVM compiler.

Contributions.
• We present Lool, an optimization-log guided fuzzer that uses domain-specific knowledge
to reach rare compiler optimizations.
• We describe a genetic algorithm for mutating code generation parameters based on opti-
mization log feedback.
• Preliminary experiments demonstrate the effectiveness of varying generator parameters
for finding bugs.

2 Background and Motivation
2.1 The Problem of Non-Uniform Coverage
Our goal is to change the code generator’s parameters to produce code that triggers rare optimiza-
tions more often. Like other fuzzers based on fixed probability distributions, GraalVM fuzzing does
not exercise all parts of the compiler uniformly. In our experiments with 1000 randomly generated
Java programs using default configuration, the least frequent optimization occurred only 11 times,
while others occurred millions of times.

2.2 Context-Aware Coverage
Consider a loop containing control flow and a method call, making loop vectorization inapplicable.
However, applying loop peeling to separate the first iteration produces a loop that can be vectorized.
Such pairs of optimizations are interesting—in our experience, many intricate compiler bugs involve
interactions between multiple compilation phases.

Our optimization-log-based coverage can record that optimizations happened in the samemethod
or even on the same loop. A context-aware metric that does not merge information from separate
compilations can guide the fuzzer toward such interesting optimization pairs.

2.3 GraalVM Optimization Log
The GraalVM compiler generates an optimization log during compilation, including entries for
every optimizing code transformation. Full log entries include the compiler phase, optimization
name, and source code location. An abridged form only increments counters for each optimization,
with very low overhead compared to code coverage.

3 GraalVM Compiler Fuzzing
3.1 Input Program Generation
Our fuzzer generates Java source code using liveness-driven random code generation, where
all computed values are guaranteed to be used by following statements. This avoids unused
computations being trivially eliminated, increasing the density of interesting code per test case.
The generator supports a large subset of Java including class structures, control flow statements,
expressions, and method calls.

The likelihood of generating each feature is parameterizable—we call a set of such parameters a
parameter vector. Generated programs are fully self-contained and deterministic.

3.2 Test Execution
Our test harness:

(1) Receives a generated program from the input generator
2
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(2) Executes the program in the bytecode interpreter, recording reference output (this also
warms up VM profiles)

(3) Explicitly compiles methods with GraalVM up to a certain call graph depth
(4) Executes compiled code and compares output to the reference
The harness detects compiler crashes and output mismatches. Differential testing against the

interpreter enables detection of miscompilations. This framework has been in regular use within
GraalVM for three years and found many bugs.

4 Design of Lool
Lool uses the compiler’s optimization log to select among suitable parameter vectors. The selection
is driven by a genetic algorithm that breeds more desirable parameter vectors over time.

4.1 Genetic Algorithm Overview
We follow a parametric fuzzing approach but, unlike existing work that treats parameters as bit
strings, we mutate the code generator’s parameters directly. A population consists of different
parameter vectors, each used to generate a number of input programs. A parameter vector is
desirable if it triggers new optimizations or bugs. The genetic algorithm starts with baseline vectors,
fuzzes with each, and builds new generations based on feedback.

4.2 Search Space Reduction
Our code generator has over 120 parameters. We restrict parameter vectors to a subset showing
non-negligible correlation (|𝑟 | > 0.3) to optimizations:
• Five statement types: if, fold-style for, map-style for, while, synchronized
• Six expression types: local variable initialization/usage, parameter usage, binary expressions,
method calls, ternary expressions

4.3 Fitness Function
We compute fitness relative to the entire generation along multiple dimensions:

• Number of different rare optimizations triggered
• Number of bugs discovered

In preliminary experiments, we identified seven rare optimizations (fewer than 100 occurrences in
1000 test cases). For each dimension, the ten best individuals receive scores from 10 to 1, multiplied
by weights. Bug/timeout dimensions have higher weights than optimizations. Known bugs are
deduplicated by scanning error messages.

4.4 Building Generations
During mutation, the algorithm adjusts parameters while staying in valid ranges. For probability
distributions (statement/expression types), one entry “steals” from another to maintain constant
sum. With 5% probability, we perform extreme mutations biasing heavily toward one property.
Crossover chooses independent probabilities randomly from either parent, while distributions are
chosen as a whole.

5 Preliminary Results
5.1 Bug Finding
Over approximately three months of experiments, we identified 30 new crashing bugs in the
GraalVM compiler. About half were found by parameter tuning approaches, while the other half
was found by prototype versions of the genetic algorithm. These bugs would likely not have been

3
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found during routine fuzzing with unmodified parameters, as daily fuzzing generates new bug
reports at a much lower rate.

5.2 Parameter-Optimization Correlation
Inspection of optimization logs confirmed that some parameters correlate with particular opti-
mizations. This was expected at a high level—loop optimizations require certain loop shapes. Our
goal is to let the mutation engine infer more complex relationships between parameter sets and
optimizations.

5.3 Coverage Overhead
Recording line coverage with JaCoCo adds significant overhead to fuzzing runs. The optimization
log counters have very low overhead by comparison, allowing more test cases in a given time.

6 Related Work
Swarm Testing. Lool follows the insight that inputs including more features are not necessar-

ily beneficial [1]. Unlike directed swarm testing, Lool chooses targets automatically based on
optimization log coverage.

JIT Compiler Fuzzing. Fuzzili generates JavaScript programs for V8 fuzzing [2]. JITFuzz uses
coverage-guided mutation of Java class files [3]. JOpFuzz investigates relationships between code
features and JIT compiler optimizations [4]. Lool differs by using optimization logs as domain-
specific feedback.

Compiler Optimization Logs. V8’s TurboFan, LLVM’s Remarks, and Intel Compiler’s Optimization
Reports provide similar logging. Some include negative entries for attempted but unsuccessful
optimizations, which could help fuzzers gradually approach triggering code shapes.

7 Conclusions
We have presented Lool, a low-overhead optimization-log-guided approach to compiler fuzzing.
Lool uses domain-specific feedback from the compiler’s optimization log, which can be collected
with lower overhead than general code coverage. The optimization log naturally supports context-
sensitive information, such as optimizations performed during compilation of a single method.

Our preliminary experiments within the GraalVM fuzzing infrastructure have shown promising
results with 30 previously unknown bugs found. We are planning a thorough evaluation comparing
different configurations: static parameters, AFL++-based mutation with code coverage, and Lool
with context-aware optimization log feedback.

Acknowledgments. This research was partially funded by Oracle Labs. We thank all members of
the Virtual Machine Research Group at Oracle Labs and researchers at Johannes Kepler University’s
Institute for System Software.
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Semantic Patching: Language-based Automatic Program
Repair
GIACOMO PRIAMO, La Sapienza, Italy
STEFAN BRUNTHALER, Universität der Bundeswehr München, Germany

Automatic Program Repair (APR) aims to automatically fix software defects by generating patches that
correct erroneous program behavior. Existing approaches suffer from fundamental limitations: search-based
methods like GenProg explore a vast space of potential patches through generate-and-validate strategies,
while constraint-based approaches such as SemFix and Angelix use symbolic execution to derive repair
constraints. Both paradigms face inherent incompleteness problems and scalability challenges. We present
Semantic Patching, a novel language-based approach to automatic program repair that leverages rich semantic
information from compiler infrastructures. By analyzing program dependency graphs and utilizing precise
type information, control-flow graphs, data-flow analyses, and identifier semantics, our approach identifies
semantic differences between program versions rather thanmerely syntactic ones.We implement our technique
using Joern for program dependency graph extraction and clangd for symbol resolution, demonstrating that
semantic patching offers a promising, practical, and scalable alternative to existing APR methods. Preliminary
evaluation on the Codeflaws benchmark suite shows the viability of our approach across diverse defect classes.

Additional Key Words and Phrases: automatic program repair, semantic patching, program dependency graphs,
static analysis, software maintenance

1 Introduction
Software defects remain one of the most persistent challenges in software engineering. Studies
consistently show that debugging and maintenance activities consume a substantial portion of
development resources, with estimates suggesting that fixing bugs accounts for 50% or more of
total software development costs. As software systems grow in complexity, the burden of manual
bug fixing becomes increasingly unsustainable, motivating research into automated approaches.
Automatic Program Repair (APR) has emerged as a promising research direction, aiming to

automatically generate patches that correct faulty program behavior [1, 3]. The fundamental
premise of APR is deceptively simple: given a buggy program and a specification of correct behavior
(typically a test suite), automatically synthesize a patch that transforms the program to satisfy the
specification.

ExistingAPR approaches can be broadly categorized into several paradigms. Search-basedmethods,
exemplified by GenProg [6], employ genetic algorithms to explore the space of possible patches.
These generate-and-validate approaches systematically modify program statements and evaluate
candidate patches against test suites. While conceptually straightforward, the search space of
possible modifications is astronomically large.
Constraint-based methods, such as SemFix [4] and Angelix [2], leverage symbolic execution

to derive constraints that correct patches must satisfy. While more principled than pure search,
these approaches are limited by the scalability of symbolic execution. More recently, neural and
LLM-based methods [7] have shown promise but often struggle with semantic correctness.
All these paradigms share a fundamental incompleteness problem: the search space of potential

repairs is inherently vast, and existing techniques can only explore a limited subset. We propose
Semantic Patching, a novel approach that addresses these limitations by exploiting the rich semantic
information available in modern compiler infrastructures.

Authors’ Contact Information: Giacomo Priamo, La Sapienza, Rome, Italy, giacomo.priamo@unibw.de; Stefan Brunthaler,
Universität der Bundeswehr München, Munich, Germany, brunthaler@unibw.de.
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Fig. 1. The semantic patching pipeline. Two source file versions (top) undergo a syntactic change 𝑐𝑖 . Each
version is analyzed to extract its intermediate representation as a tree structure (middle), where magnifying
glasses highlight the differing subtrees. The semantic change 𝑐′𝑖 between the compiled representations (bottom,
shown as binary) captures the behavioral modification independent of surface syntax.

2 Semantic Patching Approach
The key insight underlying semantic patching is the distinction between syntactic and semantic
program differences. Traditional diff-based approaches operate at the syntactic level, but these
differences often obscure the actual semantic modifications. Two syntactically different programs
may exhibit identical behavior, while minimal syntactic changes can dramatically alter program
semantics.

Figure 1 illustrates our approach. Semantic patching leverages compiler-derived information to
analyze programs at a deeper level than surface syntax:

Control-Flow Graphs (CFGs) capture possible execution paths. By comparing CFGs between
versions, we identify changes to control flow structure independent of syntactic representation.

Data-Flow Analysis tracks how values propagate through the program, identifying def-use
chains and dependencies between program points.

Program Dependency Graphs (PDGs) combine control and data dependencies into a unified
representation that captures the essential semantic structure while abstracting away irrelevant
statement ordering.

Type Information provides precise semantic constraints on program values and operations.
Given a buggy program 𝑃 and a reference program 𝑃 ′, semantic patching proceeds in three phases.

First, the PDG differ extracts and compares program dependency graphs, identifying semantic
differences. Second, the semantic patch generator synthesizes a patch specification capturing the
required transformation. Third, the application sites detector identifies locations where the semantic
patch should be applied.

3 Implementation
We have implemented semantic patching as a prototype system targeting C programs. The im-
plementation comprises approximately 1,600 lines of Python code, organized into three main
components.
For program dependency graph extraction, we utilize Joern [8], an open-source platform for

static code analysis. Joern provides robust PDG construction for C/C++ programs through its Code
Property Graph (CPG) representation, which unifies abstract syntax trees, control-flow graphs, and
program dependency graphs into a single queryable structure.

8



Semantic Patching: Language-based Automatic Program Repair 3

Fig. 2. Program Dependency Graph for a sum_numbers function. Each node represents a program statement
labeled with its operation type and line number. Black arrows denote data dependencies (DDG edges)
indicating value flow between statements—for example, the parameter arr[] flows to the array access
and accumulator operations. Red arrows denote control dependencies (CDG edges) showing conditional
execution—statements within the loop body depend on the loop condition i < size. The nodes highlighted
with red borders mark the loop condition and its dependents, typical locations for boundary condition defects.

Figure 2 shows an example PDG generated by our system. The graph makes explicit the semantic
structure—data dependencies showing how values flow from parameters through computations to
the return value, and control dependencies showing how the loop condition governs execution of
the loop body.

To obtain precise symbol information, we integrate with the clangd language server through a
custom Python bridge (approximately 727 lines of code). This provides accurate type information,
symbol resolution, and semantic analysis capabilities derived from the Clang compiler infrastructure.
The PDG differ component compares dependency graphs using graph matching algorithms,

identifying corresponding nodes based on their semantic role rather than syntactic properties. The
semantic patch generator abstracts identified differences into reusable patch patterns, while the
application sites detector uses pattern matching on semantic structure to identify repair locations.

4 Preliminary Evaluation
We evaluate our approach on the Codeflaws benchmark suite [5], a comprehensive collection of
real-world defects extracted from programming competition submissions. Codeflaws contains 7,436
programs encompassing 3,902 distinct defects classified into 40 categories, including statement-level
changes, operator defects, operand defects, and higher-order mutations.

This benchmark provides an ideal testbed for semantic patching because it includes pairs of buggy
and correct program versions, enabling direct analysis of semantic differences. Our preliminary
results indicate that semantic patching can successfully identify and characterize repairs across
multiple defect classes. The PDG-based analysis effectively captures the semantic essence of repairs,
even when syntactic representations differ substantially.

9
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We observe particularly strong results for operator and boundary condition defects, where the
semantic change is localized and clearly visible in the dependency structure. The diversity of
defect types allows us to assess the generality of our approach and identify areas where additional
techniques may be needed.

5 Related Work
Our work builds on several lines of research. Search-based APR techniques like GenProg [6]
use evolutionary algorithms but struggle with combinatorial explosion. Our semantic approach
provides a more focused search space. Constraint-based APR methods including SemFix [4]
and Angelix [2] provide stronger guarantees but face scalability challenges. Semantic patching
shares the goal of semantic analysis but avoids path explosion through static dependency analysis.
Program differencing research has developed techniques for comparing versions; we apply these
ideas specifically to APR.

6 Conclusion and Future Work
We have presented Semantic Patching, a novel language-based approach to automatic program
repair that leverages rich compiler-derived semantic information. By analyzing program dependency
graphs rather than syntactic representations, our approach offers a promising alternative to existing
APR techniques.

Our preliminary results suggest that semantic patching is: (1) Promising—successfully iden-
tifying semantic differences across diverse defect classes; (2) Practical—integration with Joern
and clangd enables robust analysis; and (3) Scalable—PDG-based analysis avoids the exponential
blowup of symbolic execution.
Future work will expand evaluation to additional benchmarks including Defects4J, extend lan-

guage support to Java and Python, and develop more sophisticated patch synthesis algorithms that
leverage semantic information for generating candidate repairs.
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Angluerus: Data-based Hardware-Software Binding Through
Rowhammer
DANIEL DORFMEISTER, Software Competence Center Hagenberg, Austria
MATHÉO VERGNOLLE, Synacktiv, France
STEFAN BRUNTHALER, 𝜇CSRL, CODE Research Institute, University of the Bundeswehr Munich,
Germany

Modern industrial machinery comes with advanced control software. Although this control software typically
contains valuable intellectual property, it often lacks effective protection. Consider, for example, obfuscation:
copying to cloned machinery suffices to bypass protection. Prior work has investigated possibilities to bind
software to a specific device such that the software cannot be used independently of the device. GlueZilla,
for example, binds software to hardware by making the execution of the software depend on device-specific
Rowhammer-induced bit flips. The protected software thus exhibits a different behavior when executed on a
device it was not compiled for.

We present Angluerus, which extends the idea of GlueZilla into the data domain. By aligning data with
Rowhammer-induced bit flips, Angluerus is both more portable and able to tolerate unstable bit flips. To
frustrate dynamic analysis, Angluerus uses debug blocking in combination with moving the Rowhammer
part to a separate process. We evaluate Angluerus w.r.t. two properties: practicality and performance. Two
case studies serve to demonstrate practicality. To evaluate performance, we use a matching subset of the SPEC
CPU 2017 benchmarks and report an order of magnitude improvement over GlueZilla.
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Code-Copying Compilation in Production
An Experience Report

M. ANTON ERTL, TUWien, Austria
BERND PAYSAN, net2o, Germany

A code-copying compiler implements a programming language by concatenating code snippets produced by
a different compiler. This technique has been used in Gforth since 2003, with code snippets generated by
GCC. We have solved various challenges: in particular, which code snippets can be copied and what to do
about the others; and challenges posed by changes in compilers. The performance of Gforth is similar to that
of SwiftForth, a commercial system with a conventional compiler; the implementation effort is comparable
to 1–2 targets for SwiftForth.

1 INTRODUCTION
Code copying is a programming language implementation technique where the compiler of the
implemented languate A concatenates code snippets coming out of the compiler for language B.
While there have been a number of research papers about this topic (see Section 8), we know of
only one production language implementation that has used this approach for a long time: Gforth.
The present work is an experience report about the use of code copying in Gforth: How does

it compare to a conventional compiler (Section 2)? Section 3 explains the concepts of code copy-
ing, while Section 4 discusses various implementation aspects. We also discuss the problems from
changes in compilers (Section 5) and operating systems (Section 6) and how we overcame them.
In addition to this experience report, this paper also discusses alternative approaches (Section 7)

and related work (Section 8).
The present work also appears in the EuroForth 2025 proceedings, with the same content and

different formatting.

1.1 Is Gforth a production system?
Gforth is free software that has been developed since 1992 and first released in 1996. As it is free
software, everybody can use it without contacting us, and few people do, so we do not know that
much about who uses it for what purpose. However, we know that it has been used by IBM and
Apple in their work onOpen Firmware, and Forth, Inc. (who develop SwiftForth, but also give Forth
courses) have given courses using Gforth, also in the Open Firmware context. So: Yes, Gforth is a
production system.

2 WHY NOT JUST WRITE A CONVENTIONAL COMPILER?
One reason why people may have avoided going for a code-copying compiler is the assumption
that writing a conventional compiler will produce better code, or require less effort. By “conven-
tional” we mean that there is a large amount of hand-written architecture-specific code for each
target architecture in the compiler. So before we go into details about code copying, wewill address
this concern.

2.1 Performance
Figure 1 shows the performance of the gforth-fast engine of Gforth1 with various optimizations,
of two commercial conventional Forth compilers (SwiftForth and VFX Forth), and, for of GCC-12.2
1Gforth also has an engine gforth intended for debugging. All referenences to Gforth performance refer to gforth-fast.

Authors’ addresses: M. Anton Ertl, TU Wien, Vienna, Austria, anton@mips.complang.tuwien.ac.at; Bernd Paysan, net2o,
Burladingen, Germany.
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Fig. 1. Speedup factor of various systems over Gforth with code copying, on a Core i5-1135G7 (Tiger Lake)

gcc -O0, -O1, and -O3. All Forth systems use load-and-go compilers (compile time is included in
the results), while GCC uses ahead-of-time compilation (only the run-time is shown in the results).
Not all benchmarks are available in C, and not all benchmarks run on all Forth systems, and the

missing cases are reflected by missing bars.
The data shown is the median of 30 runs for each benchmark/system combination on a Core

i5-1135G7 (Tiger Lake); each bar represents the number of cycles of Gforth with only code copy-
ing divided by the number of cycles of the system represented by the bar, i.e., the speedup of that
system over Gforth with only code copying. The Gforth version used is 0.7.9_20250817, com-
mit 4224ab5fafea970dade64b04493ef690da8b3c32compiledwith gcc-11.4. The benchmarks are
from the Forth appbench suite (benchgc–fcp), Gforth’s small (and mostly loop-dominated) bench-
marks (siev–fib), and two additional ones.
As can be seen, the performance of Gforth with all optimizations is similar to that of SwiftForth,

which uses a conventional compiler, and typically around half of the performance of VFX Forth,
which also uses a conventional compiler.

Before comparing Gforth with the others, let’s first take a look at the variants of Gforth, starting
with the one with the best performance/effort:

Threaded code This is a fast interpretation technique for virtual-machine (VM) code, with-
out any machine-code generation (see Section 3.1).

Code copying This method concatenates code snippets from the threaded code engine (see
Section 3). It requires an estimated 500 lines of code in the Gforth source code. With this
method Gforth still accesses literal data and performs control flow by accessing the VM
code; it therefore also maintains a VM instruction pointer (IP), and updates it once for
every VM instruction.

IP-update optimization This optimizaton reduces these IP updates. It was added by insert-
ing 864 lines and deleting 316 lines in the Gforth source code [EP24].
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Code-Copying Compilation 3

Stack caching (actually static multi-state stack caching) eliminates many memory accesses
to stack items and stack-pointer updates [EG04a, EG05]. The way this optimization as im-
plemented in Gforth requires code copying to work.

Static superinstructions replace a sequence of Forth words with an optimized sequence
[EGKP02]. Many of the benefits that static superinstructions have originally provided are
now provided by code copying, the IP-update optimization and static stack caching; there
are still cases where static superinstructions result in shorter code, but this has not led to
consistent speedups in these measurements.

The code implementing stack caching and static superinstructions is quite interweaved with the
rest of the code, so it is hard to give precise numbers for their size, but we estimate [Ert24] that all
four optimizations combined require an estimated total of 5000 lines of code.
SwiftForth’s compiler can be seen as a copy-and-patch compiler, but with the code snippets

written by hand in assembly language and better resulting code than when patching using object
file linkage imformation (see Section 7.3). SwiftForth does not have a VM interpreter substrate, and
therefore does not have IP updates, so it gains the benefits of the IP update optimization without
having to do anything. It deals with literal values and control flow by patching the code. SwiftForth
does not perform multi-state stack caching, but it makes extensive use of static superinstructions
(346 rules in 1819 lines). Overall each of the IA-32 and AMD64 targets of SwiftForth has about 7000
lines of architecture-specific code [Ert24].
Gforth with all optimizations is competetive in speed with SwiftForth, so apparently Gforth’s

stack caching provides enough speedup to compensate the costs that Gforth incurs for literals and
control flow.
VFX Forth performs register allocation of data-stack items within a basic block, and inlines

aggressively; inlining is very helpful for idiomatic Forth code, where calls and returns are the
most frequent basic block boundaries. Therefore inlining also enhances the effectiveness of VFX’s
register allocator. The speed advantage of VFX over Gforth and SwiftForth is a result of these
optimizations. In particular, for the cd16sim benchmark there is one call site that calls an empty
definition and that is responsible for 2/3 of Gforth’s run-time on this benchmark,while VFX inlines
it away. We have no source code for VFX and therefore cannot report numbers about the size of
its compiler. When asked about the effort to port VFX to ARM A64 (a currently ongoing project),
Stephen Pelc gave the qualitative statement “far too much”.
VFX is faster than Gforth by typically around a factor of 2. However, it is possible to perform

inlining in Gforth, too, with direct performance benefits as well as indirect benefits from better
stack caching. It will be interesting to see how far Gforth (and code copying) can close the gap.
Gforth’s performance with all optimizations is roughly comparable to that of gcc -O0 on those

benchmarks that are also available in C. gcc -O1 and gcc -O3 often produce significantly faster
code; sometimes they don’t, but the reasons for that are beyond the scope of this paper.

2.2 Portability
A major reason to avoid implementing a conventional compiler is portability/retargetability.

Gforth has supported as many architectures as we could get our hands on, as long as gcc and
something Unix-like (e.g., Cygwin for Windows) is available on the architecture. Gforth has sup-
ported the following architectures with a code copying compiler: Alpha, ARM A32/T32, ARMA64,
HPPA, IA-32, IA-64, Loongarch, SPARC, PowerPC, PowerPC64 (but we no longer can check for
all architectures that they still work). Gforth supports all architectures it does not know about by
falling back to threaded code, which is slower, but still works.
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lit
0
i
c!
dup
(+loop)
loophead

VM code
threaded code

RISC-V machine code

i implementation

I_lit: addi ip,ip,16
       sd   tos,0(dsp)
       ld   tos,-8(ip)
       addi dsp,dsp,-8
       ld   a4,0(ip)
       jr   a4

(+loop) implementation

c! implementation
dup implementation

C Code

I_lit:
  ip += 2;
  dsp[0]=tos;
  tos=ip[-8];
  dsp--;
  goto *ip[0];

Fig. 2. Threaded-code representation of VM code. Each box is a machine word. Slanted light blue indicates
an immediate operand of the preceding VM instruction.

In particular, when IA-64 (launched 2001) and AMD64 (launched 2003) became available to us
in 2003, Gforth worked out of the box on these architectures2 using the unknown-architecture
support, likewise for ARM A64 in 2014 and RISC-V in 2017. A few small changes enabled code
copying3, and a one-line change for configuring the number of registers for stack caching.
The benefit of code copying is that it reuses the retargeting efforts of the compiler it is based on

(GCC or Clang in case of Gforth).
By contrast, SwiftForth has supported only IA-32 until the 2020s, when they started working on

an AMD64 port (released on 2025-10-22). VFX has supported IA-32 initially, later ARM A32, and,
also starting in the 2020s, AMD64. Both systems have interactive cross-compilers for a number of
embedded targets.
The low number of desktop ports and the late support for AMD64 may be due to lack of com-

mercial interest, but we think that the larger effort required to retarget and maintain the compiler
for another architecture has something to do with it. iForth, another conventional Forth compiler,
got an AMD64 port in 2009, but the IA-32 port was subsequently dropped (last release with IA-32
support in 2011).

2.3 Incremental development
Another benefit of code copying over writing a conventional compiler is that it can be done step-
by-step: First add code copying, then add one optimization (e.g., IP-update optimization), then the
next, etc., always with the fallback options of disabling the optimization or completely falling back
on threaded-code interpretation.
By contrast, when coming from an interpreter, the conventional model requires a big-bang ap-

proach where a complete code generator for one target has to be developed without reusing much
from an existing interpreter; and as long as you do not develop code generators for all targets, you
still need to maintain the interpreter, as well as all the compiler targets. The latter will hopefully
be helped by designing the compiler for retargetability, but that increases the complexity of the
compiler framework.
2We added 64-bit support in 1996 while doing the Alpha port.
3For RISC-V, this was our first encounter with gcc-7 and its more aggressive code duplication (Section 5.4); we needed a
little longer to find a workaround for that, but that’s not specific to the architecture.
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3 WHAT IS CODE COPYING COMPILATION?
3.1 Threaded Code
The basis for Gforth’s code-copying implementation is a threaded-code interpreter [Bel73] for
Gforth’s virtual machine (VM).
As a running example, we look at the VM code in Fig. 2. The first VM instruction in the example

is lit, which has an immediate operand 0. This VM instruction pushes its immediate operand
on the data stack. It is represented by the address of the machine code that implements it; in
direct-threaded code, every VM instruction is represented by the address of the machine code that
implements it. In the case of lit, the implementation for RISC-V (RV64G) is:

# //C code
addi ip,ip,16 # ip += 2;
sd tos,0(dsp) # dsp[0] = tos;
ld tos,-8(ip) # tos = ip[-1];
addi dsp,dsp,-8 # dsp--;
ld ca,0(ip) # ca = ip[0];
jr ca # goto *ca;

This code uses register names that reflect their roles: ip is the VM instruction pointer; tos is
the top of the data stack; dsp is the data stack pointer; ca is the code address (of the next VM
instruction).
The slanted blue instructions are the payload which perform the actual work of the VM instruc-

tion as far as code copying is concerned. Other optimizations reduce that part further; e.g. the first
instruction updates IP, and the IP-update optimization often optimizes it away.
The third instruction loads the immediate operand (0) from the VM code by accessing it through

IP. This access of immediate operands and control-flow operations through IP is still in Gforth with
all optimizations applied, and is the difference between an interpreter-based code-copying system
and a copy-and-patch system (Section 7.3).
The bottom two (black) instructions perform the dispatch to the next VM instruction. The first

instruction loads the machine code address of the next VM instruction, and the second instruction
jumps to it.
This assembly-language code can be generated from the C code shown in the comments of the

assembly language. It uses the GNU C extension “Labels as Values”,4 which allows jumping to the
address in ca with goto *ca5; this extension is also supported by Clang, tcc, and icc.
The other VM instruction implementations have the same pattern of payload, and dispatch. The

last VM instruction in our example, (+loop) is notable: it is a VM-level conditional branch that
branches back to loophead (given as immediate operand) or falls through to the next instruction.
It is implemented with the following code

4https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
5The GCC maintainers call this a computed goto, although it is more like a Fortran assigned goto.
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lit addr
0
i addr
c! addr
dup addr
(+loop) addr
loophead

VM code
threaded code

VM instruction implementations
static machine code

i payload
rest of threaded-code dispatch

I_lit: addi ip,ip,16
       sd   tos,0(dsp)
       ld   tos,-8(ip)
       addi dsp,dsp,-8
K_lit: ld   a4,0(ip)
       jr   a4
J_Lit:

(+loop) payload
threaded-code dispatch

c! payload
threaded-code dispatch

dup payload
threaded-code dispatch

addi ip,ip,16
sd   tos,0(dsp)
ld   tos,-8(ip)
addi dsp,dsp,-8
i payload
c! payload
dup implementation
(+loop) payload
threaded-code dispatch

copied machine code

Fig. 3. Code copying.

addi ip,ip,16 # ip += 2;
...compute condition...
blt a5,zero,fallthrough # if (taken) {
ld ip, -8(ip) # ip = ip[-1];
ld ca, 0(ip) # ca = ip[0];
jr ca # goto *ca;
fallthrough: # }
ld ca,0(ip) # ca = ip[0];
jr ca # goto *ca;

If the conditional branch is taken, the new IP is loaded from the immediate operand and a
dispatch is performed. It is better to have separate dispatches for the taken and the fallthrough
cases for branch prediction6 and because it allows to leave away the fallthrough dispatch in code-
copying.

3.2 Code copying
Most VM instructions do not perform VM-level control flow, but just continue with the next VM
instruction. Code copying copies and concatenates the machine code implementing the VM in-
structions, but in most cases without the dispatch code at the end. Only taken branches (i.e. VM
instructions that change IP to point to some other VM instruction than the next one) need to
perform a dispatch.
Figure 3 shows this for our running example. The VM code is conceptually the same as before,

but for each VM instruction the machine word now points to the copied machine code instead of
the original.

6Even with history-based indirect-branch prediction, branch predictors have an easier time if there are fewer targets for
each indirect branch
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In particular, the copied code still has the IP, which points to the threaded (VM) code, and it
accesses the immediate operands 0 and loophead through it. The threaded code is also used on
control flow: the VM-level conditional branch (+loop) is taken, loads the target threaded-code
address loophead into IP, and then performs a threaded-code dispatch, which loads the code ad-
dress at loophead, which points to the start of the concatenated code. All control flow in Gforth is
performed with threaded-code dispatches in this way.
The threaded-code slots for instructions other than lit in this example are not accessed during

execution. Gforth keeps them around to simplify the implementation.
At the end of the shown sequence the threaded-code dispatch is copied. While this is necessary

for unconditional branches, it is not generally necessary for conditional branches such as (+loop)
(as discussed above). However, the following VM instruction may make it necessary to perform a
dispatch after the (+loop).
Code copying has also been called the memcpy()method [RS96], selective inlining [PR98] and

(especially in Gforth) dynamic superinstructions [EG03a].

3.3 Benefits over threaded code
The obvious benefit of code copying is that it eliminates most threaded-code dispatches and results
in straight-line execution of VM-level straight-line code, avoiding the limit of typically one taken
branch per cycle. Another benefit is that the indirect branches in most of the remaining dispatches
have only one target, vastly improving branch prediction accuracy in CPUs without sophisticated
indirect-branch predictors, and still making life easier (and faster) for hardware with such branch
predictors.
Another benefit is that code copying enables additional optimizations that require code snippets

that are not represented as VM instructions (and where introducing additional VM instructions
with threaded-code dispatch would make the optimization unprofitable).

E.g., the IP update optimization [EP24] leaves the IP update in front of most VM instruction
implementations away and replaces it with an IP update by a larger amount for VM instructions
that actually use the IP.
As another example, stack caching as implemented in Gforth inserts transitions between stack-

cache states where necessary. These transitions do not have a VM instruction slot and therefore
can only be inserted when code-copying is enabled. Gforth’s stack-caching implementation relies
on being able to insert the transitions, so stack caching is disabled when code copying is disabled
[EG04a].

3.4 When is code copying appropriate?
The shorter the VM instruction implementations are, the larger the benefit of code copying over
threaded code, because the overhead of threaded-code dispatch is relatively larger then.
Conversely, with long VM instruction implementations as in Tcl, whose VM instructions “can

average hundreds of [machine] instructions” [VA04] the benefit is small, and often does not amor-
tize the cost of copying the code or of increased I-cache misses [VA04].
Another aspect is that a compiler (to VM code) that uses more VM instructions, with each doing

less, has more opportunities to optimize the VM code. This has been done for CPython recently7.
With expensive VM instruction dispatch, splitting an existing VM instruction into several simpler
ones increases the cost, and the opimization must be very good and must be applicable often to
amortize this cost. With code-copying, the dispatch cost approaches 0, and such transformations
become less of a gamble.

7https://github.com/faster-cpython/
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4 IMPLEMENTATION OF CODE COPYING
4.1 Code organization
Gforth has a big function engine() that contains all the code snippets (implementations of all VM
instructions, and additional snippets used by optimizations), and little else.
Every code snippet has a label in front of it and behind it:
L_before:
code snippet in C;

L_after:
threaded-code dispatch;

You can see that more concretely in Fig. 3.
The label before it obviously points to the start of the code snippet.
Getting the right label for the end of the code snippet was initially straightforward (up to gcc-

3.1), but later required extra work. If the source code falls through to the label (i.e., it does not end
in an unconditional branch), like for the payload of most VM instructions in Gforth, with some
extra help (see Section 5.4), the following label points right behind the code snippet, but if the code
snippet cannot reach the label (e.g., because it ends in an unconditional branch, e.g, in a threaded
code dispatch), gcc-3.2 and following have reordered code. We solved this problem by taking the
values of all the labels, sorting them, and searching for the first label behind the label at the start
of the snippet. This might include some unrelated code in cases where the code snippet does not
fall through to the label, but in that case this is not a problem for correctness (but possibly for
relocatability, see Section 4.5).
The function engine() has two code paths: the first just returns a table containing all the labels,

for use in threaded-code generation and code-copying; the second starts the execution of the code
by performing a threaded-code dispatch.
If code copying is disabled,8 the threaded code address for each VM instruction just points to

the implementation of that instruction inside engine(), and every threaded-code dispatch jumps
around within this function.
With code copying, the first threaded code dispatch in engine() jumps to the copy of the VM in-

struction implementation and continues running there, with control-flow changes by performing
a threaded-code dispatch.

4.2 Why does it work?
Why can we concatenate the code snippets produced in the way described above, and get code
that works?
In particular, won’t the register allocator have different register allocations for the different code

snippets? Actually, at the start and, for fallthrough snippets, the end of the snippet, the register
allocation has to be the same as at the start of every other snippet, because the compiler has to
consider the possibility that every goto * jumps to every label whose address is taken. And the
addresses of all labels before and after all code snippets are taken (to determine the code snippet
address and length).
The code snippets that do not fall through end in a goto * in Gforth. And the register allocation

at the goto * has to be compatible with that of all the labels whose address is taken, or it would
not work even in ordinary use.

8Gforth option --no-dynamic.
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More precisely, engine() is compiled separately from the code dealing with the threaded code,
so the C compiler has to assume that every goto * in engine() can jump to any label whose
address is taken.
Therefore, at a goto * all variables are alive (i.e., read before being overwritten) that are alive

at any label whose address is taken, and each variable has to be in the same location at all those
labels and all the instances of goto *. The code snippets that fall through to their second label are
followed by a threaded-code dispatch:

ca = ip[0];
goto *ca;

so at the label between the code snippet and the dispatch, all the same variables are alive as
at the goto *, except possibly ca, but that is not alive before the threaded-code dispatch, either.
These variables also all have to reside at the same locations, because the goto * could jump to
them.

4.3 Fallback
There are cases where certain code snippets cannot be copied (usually because they are not relo-
catable, see Section 4.5). How does Gforth deal with that?
Gforth falls back to plain threaded code in these cases: Append a threaded-code dispatch to the

previous copied code snippet (unless the code snippet already ends with a threaded-code dispatch),
and let the machine word representing the current VM instruction point to the original implemen-
tation of the VM instruction (inside engine()) rather than a copy). At run-time, the code performs
the threaded-code dispatch, which then jumps to the original; that ends in another threaded-code
dispatch, which may jump to code coming out of code-copying, or to another original implemen-
tation.
If other optimizations are active, the preparation for the fallback may require appending addi-

tional code. E.g., the IP needs to be up-to-date before the threaded-code dispatch, so in the presence
of IP-update optimization, an IP update may be inserted before the threaded-code dispatch. Also,
in Gforth the plain threaded code always expects the stack in the canonical state, so in the presence
of stack caching, a transition from the current stack state to the canonical stack state may need to
be inserted before the threaded-code dispatch.
Gforth may also find that it cannot copy the threaded-code dispatch. In that case it disables code

copying completely and falls back to threaded code not just for individual VM instructions, but for
all of them.
The option to fall back to threaded code has helped in various cases where things did not work

according to our expectations (e.g., see Section 5.4). It means we always have a way to make Gforth
work, albeit not as fast as we would like.

4.4 Instruction sets
Code copying is based on the assumption that the code snippets are independent and concatenable.
At the instruction-set level this is satisfied if individual instructions are independent and concaten-
able. Some instruction sets have restrictions between groups of instructions. In this case a code
snippet must not contain a partial group, i.e., there must not be a label within a group.
There are a few cases of such instruction-set restrictions:

Branch delay slots This is amisfeature of some early RISC architectures, in particular, HPPA,
MIPS and SPARC: The branch instruction performs the instruction behind it before con-
tinuing at the target. This does not work with code copying if the compiler puts a label

21



10 M. Anton Ertl and Bernd Paysan

between the branch and the instruction behind it. However, the compilers we have used
(most recently gcc-14.2) do not do that.

Load delay slots This is a restriction of the MIPS I instruction set (eliminated in MIPS II).
The instruction behind a load instruction is not allowed to read the register written by
the load instruction. MIPS I also has some placement restrictions on reading and writing
the hi and lo registers. Having labels right after the load or in the shadow of hi/lo reads
can result in violating these restrictions in code copying. We have not tested if compilers
actually place labels in a way that would lead to such violations. Instead, these concerns
along with the relocatability problems (Section 4.5) and the lack of relevance of MIPS in
Unix systems around 2003 were the reasons why we just configured Gforth to fall back to
threaded code on MIPS (including the 64-bit MIPS port).

Instruction groups This is an IA-64 (aka Itanium processor family) property. Instructions
within a group have restrictions on register usage that are intended to ensure that the
instructions can be performed in one cycle without register renaming.9 If a compiler put a
label inside a group, code copying could violate these restrictions. Apparently the compilers
we used (gcc-3.3, gcc-4.1.3, gcc-4.3.2) put stops (group boundaries) at labels, because in our
testing IA-64 has always worked fine. If they did not, an easy fix would be to insert the
stops using asm statements or at the assembly-language stage.

Based on the experiences with branch delay slots and instruction groups, it seems that gcc
developers also avoid splitting groups of instructions with interdependencies by inserting a label
inside these groups, but if these instruction sets still were important targets, that might change.
The problematic restrictions/features have not spread to newer architectures and all the archi-

tectures with these restrictions in general-purpose computers have been canceled in the meantime,
while older or contemporary architectures without these restrictions thrive. So apparently the idea
of independent, concatenable instructions has some merit, and we can expect that future instruc-
tion sets will also exhibit this property and thus support code copying.

4.5 Relocatability
A code snippet must be relocatable in order to be used in code copying, i.e., it must behave the
same way in the original place and when copied.

Non-relocatable code. Themain problems here are references to addresses: The code in the snippet
must refer to addresses inside the snippet in a PC-relative way, and must not refer to addresses
outside the snippet in a PC-relative way. Most architectures refer to other code addresses in a
PC-relative way, so the most common reason for non-relocatability is when the VM instruction
implementation performs a call to some function (e.g., for performing I/O).
Accesses to global constants or to global variables in a PC-relative way can also cause non-

relocatability. Gforth avoids global variables for that reason and because of multi-threading; it
stores some formerly global variables in a struct whose address is stored in a local variable inside
engine(). However, computing the FP negation and the FP absolute value implicitly involve a
constant that resides in memory on AMD64 (with SSE2 FP), making the implementations of these
VM instructions (fnegate and fabs) non-relocatable on this architecture.

The pointer-to-struct approach could also be used for invoking functions without making the
calling code non-relocatable, but for now we have not done that.
Note that asking the C compiler for position-independent code does not mean that individual

code snippets are relocatable, even though the binary as a whole is, because position-independent
9Groups are often confused with bundles, which are IA-64’s encoding of three instructions in 128 bits. By contrast, groups
can be arbitrarily long, and can start and end somewhere in the middle of a bundle.
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code may refer to code or data outside the code snippet in a PC-relative way (and usually does),
while a relocatable code snippet must not do this.

Determining relocatability. How do we find out if a code snippet is relocatable or not? The imple-
mentations of the VM instructions actually look as follows:
L_skip:
asm("SKIP4");
asm("SKIP4");
asm("SKIP4");
asm("SKIP4");

L_before:
code snippet in C

L_after:
asm("SKIP4");
asm("SKIP4");
asm("SKIP4");
asm("SKIP4");
threaded-code dispatch

We compile engine() with these pieces to assembly language. Then we assemble the result
twice: Once with SKIP4 defined as empty string, so the SKIP4s assemble to nothing, and the re-
sult is as discussed earlier; and once with SKIP4 defined as .skip 4, and with engine defined as
engine2, so as a result the object file contains a function engine2() that has 16 bytes of padding
before and after each code snippet.10 We link both object files into the final executable. The ad-
dresses of the L_skip labels are taken and passed outside engine(), so gcc cannot optimize the
initial skip away as dead code, and also because that usually is the next label after a threaded-code
dispatch.
We now have a function engine()without the skips before and after the code snippets, and a

function engine2() that has 16-byte skips before and after each code snippet. We extract the labels
from each of the functions, and then compare the code snippets: If a code snippet from engine()
contains exactly the same bytes as the corresponding code snippet from engine2(), then the code
snippet is relocatable, otherwise it is not.
How does this work? If code from inside the code snippet references a code or data address out-

side the code snippet through a PC-relative address, the offset of the relative address will be differ-
ent between engine() and engine2(), because the target label will be farther away in engine2()
thanks to the skips. If there is an absolute reference (e.g., MIPS j instruction) to inside the code
snippet, it will be different between engine() and engine2(), because the respective targets are
at different addresses.
Even if the code snippet ends in an unconditional branch and the C compiler puts some other

code behind that unconditional branch,11 this scheme works: If the two code snippets compare
equal, the code is relocatable. When used in a code-copying system, the code snippet may have
some unused code behind the unconditional jump, but the generated code is still correct.
The reason for skipping 16 bytes is that this is a common code-alignment value, so the skips

would not result in altered alignment (these dayswe ask the compiler to align to 1-byte boundaries,
so skipping less might be sufficient). The reason for performing the 16-byte skip as 4 4-byte skips

10In earlier times we compiled twice rather than assembling twice, but compiling once is faster, and we do not need to
worry if the two compilation runs introduce unintended differences in addition to the intended ones.
11We have not seen such an occurence yet.
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is that for some targets gcc counts the number of instructions in asm statements, assumes that
each instruction takes at most 4 bytes, and generates code that relies on this assumption.
The absolute target addresses for the MIPS j and jal instructions have a catch: They work only

for targets in the same 256MB segment of the address space. When we last looked, the functions
engine() and engine2()were linked in the same 256MB segment as the functions called by some
of the code snippets, and the code snippets would have been classified as relocatable. However, they
were only relocatable within this 256MB segment. This is another reason why we disabled code
copying for MIPS. An alternative would have been to allocate the memory for the copied code in
the same 256MB segment as the original. Fortunately, among the architectures we have looked at,
only MIPS has this property.

5 COMPILER ISSUES
In the previous section we have already mentioned a few caveats about how compilers have in-
terfered with our initial assumptions about the generated code, and what we do about that. This
section discusses additional issues.
We had quite a few problems with various gcc versions in the 2000s, and for some we found

ways to deal with them, while some others were eventually fixed (after reappearing for several
years). Also, the rethoric about undefined behaviour started at around that time and has spread
and become more aggressive since then,12, so at some point we expected to have to switch from
using GNU C to assembly language as a more reliable foundation at some point [Ert14], essen-
tially switching to a conventional compiler. But this has not happened (yet?), and actually, in the
2010s and 2020s only few new problems have appeared, and we found ways to deal with them.
So GNU C seems to be a relatively stable foundation after all, once one has implemented various
workarounds.

5.1 Code reordering
When we started, gcc arranged the basic blocks in source order. This changed with gcc-3.2. This
has an effect on how we find the next label (Section 4.1). But we also saw cases where the compiler
moved basic blocks from between L_before and L_after to outside these labels, which caused
problems.
To avoid such problems, we tried to have only straight-line code in the VM instruction implemen-

tations. We extracted loops and most if-statements into functions that are compiled separately,
and the VM instruction implementation only contains a call to this function. This costs a little
performance (from the function call as well as turning the VM instruction implementation into
non-relocatable code on most architectures), but fortunately the VM instruction affected by this
are executed relatively rarely.
However, conditional VM branches are executed frequently, and in the ideal case they contain

a conditional branch, in the following form (also seen for (+loop) in Section 3):

12http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
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... skips ...
L_before:
... stack handling etc. ...
if (VM_branch_taken)
ip = ip[-1]; /*VM-branch target*/
threaded-code dispatch;

L_after:
... skips ...
threaded-code dispatch;

Ideally such VM-instruction implementations are compiled such that the basic blocks in the
machine code are in the same order as in the source code, so that the code controled by the if is
between L_before and L_after, and the second threaded-code dispatch can be left away by code-
copying in the usual case. For now, gcc does it that way for our code. But if gcc ever started chang-
ing this, a possible way to steer it back on the right pathmay be to use __builtin_expect(VM_branch_taken,1
instead of just VM_branch_taken.

5.2 Code alignment
Compilers insert padding to align branch targets to instruction-fetch boundaries or cache-line
boundaries. In particular, they do this for branch targets behind unconditional branches and loop
heads.
When code copying, the padding inserted for the original code is often inappropriate for the tar-

get code. Therefore, we suppress this padding by compiling engine()with the options -falign-labels=1 -falign-loops
-falign-jumps=1.

Instead, our code-copying implementation performs its own alignment (but on 2007-era proces-
sors where we measured the effects, the effects were in the noise).

5.3 Code deduplication
Starting with gcc-3.0, gcc started to compile all the goto * instances to an unconditional jump to
one instance of an indirect branch. The reason for this probably was to reduce the control-flow
edges in the data-flow analysis, for< goto * and = labels from =< to = +<.
In a number of gcc versions (up to the early gcc-4.x releases), gcc then did not eliminate the un-

conditional jump afterwards, with some versions eliminating them and some versions regressing,
but eventually the gcc maintainers managed to make the unconditional-branch elimination stick,
for our code.
So if that is a solved problem, why do we mention it here? We occasionally see this problem

reappear in some form, so it’s not completely gone.
E.g., when we managed to extend stack-caching support on AMD64 to three registers, we found

that onAMD64 gcc compiled the goto * to an unconditional branch to common code that contains
a lot of register shuffling (with no overall effect) and finally the indirect branch. Apparently the
register shuffling made the common code so long that the branch-elimination heuristic decided
not to eliminate the branch.
Fortunately, we found out that the register shuffling (and, consequently, the unconditional branch)

go away with the compilation option -fno-tree-vectorize. Apparently without this option gcc
tries to vectorize loads and stores of adjacent values, and is less precise in the data flow analysis
for that than for individual values, leading to the register shuffling.
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For the problems in the gcc-3.x and 4.x era, Gforth contains a workaround that has just one
threaded-code dispatch and jumps there from all the VM instruction implementations. Gforth has
labels before and after this dispatch, and because there is only one, gcc does not deduplicate it;
this allows Gforth to use it as a code snippet that is appended whenever a threaded-code dispatch
is needed.
In order to work with this workaround and still be relocatable, we implemented conditional VM

branches to just set the IP on a taken branch, and then continue through L_after to the dispatch
code. This results in worse code than we would have liked, but it was the best that was possible
on these compiler versions. This approach remains an option when building Gforth,

5.4 Code duplication
On our first encounter with gcc-7, we found that the generated code looked as a straightforward
compiler would generate for:
L_skip:
... skipping ...
code snippet in C;
threaded-code dispatch;

L_before:
code snippet in C;
threaded-code dispatch;

L_after:
threaded-code dispatch;

I.e., gcc-7 duplicated code reached by jumping to a label and the same code being reached in
a straight-line way. This may be a useful optimization, but it means that our code snippets now
contain the dispatch code, which is contrary to our intentions.
We found the following workaround: In order to convince gcc that this code duplication does

not pay off, after each label we insert 8 asm statements, each containing a comment with a text
unique to that label (so gcc hopefully will not try to deduplicate the code). Currently this is enough
to convince gcc to avoid the code duplication

5.5 Register allocation
Virtual machines have a number of “registers”, which are implemented in C code as C (local) vari-
ables. At least for the frequently-used variables, it would help performance if they were allocated
to real-machine registers.
Up to and including gcc-9, we explicitly assigned registers to several of these variables on many

platforms with GNU C’s feature “Explicit Register Variables”. In gcc-10 and later, disabling the
explicit register variables produced better results than enabling them.
With either approach, we have the following problem: In the Gforth engine, gcc only used callee-

saved registers for these variables. With explicit register variables, because gcc does not accept
caller-saved registers for those. But if left to itself, gcc does not use caller-saved variables, either,
because engine() contains about 100 VM instruction implementations that perform calls, and
these calls apparently cause the compiler to avoid using caller-saved registers for these variables,
especially for those that are used in < 100 VM instructions, such as the return-stack pointer of
Gforth. A problem here is that gcc does not know that VM instructions that access the return
stack are used frequently, while VM instructions that perform calls tend to be used rarely. This is
a problem even for architectures like Alpha that have a lot of registers in principle, but a calling
convention with relatively few callee-saved registers.
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For being able to use additional registers for stack caching without spilling other VM registers,
we use the following observation: All VM instruction implementations that contain a call only
use the canonical state with one stack item in a register, due to non-relocatability. So additional
stack cache registers are dead at the end of these VM instruction implementations, and there is no
reason to preserve these registers across the calls. But how do we tell gcc about that?
L_skip:
... skipping ...

L_before:
code snippet containing a call;
asm("":"=X"(spb));
asm("":"=X"(spc));

L_after:
threaded-code dispatch;

The empty asm statements right before L_after claim to overwrite spb and sbc (the variables
holding the additional stack-cache items in some stack-cache states). Therefore, these variables
are dead at the call and do not need to be preserved. This means that this VM instruction imple-
mentation is no hindrance to allocating spb and spc in a caller-saved register. And indeed, one of
these variables is allocated by gcc in a caller-saved register.
Another way to influence the register allocator that we have not used is the GNU C extension

“Label Attributes” (available since gcc-5).We can declare the VM instruction implementations with
calls as being cold, and/or declare frequently-used VM instruction implementations to be hot by
following the label with an attribute:
L_skip:
... skipping ...

L_before: __attribute__((cold));
code snippet containing a call;

L_after:
threaded-code dispatch;

With that, the register allocator is hopefully more willing to use caller-saved registers for local
variables of the VM.

5.6 Cache consistency
Many architectures do not guarantee cache consistency between data and instruction caches,
and require a special piece of code between generating code and executing code; this incanta-
tion typically consists of a few lines of architecture-specific (or, on some architectures worse,
implementation-specific or OS-specific) code, and for a long time has been the only non-portable
part of Gforth’s code copying implementation. Gcc-4.3 introduced __builtin___clear_cache(),
which would eliminate this last piece of non-portability. We use __builtin___clear_cache()on
RISC-V.
Unfortunately, __builtin___clear_cache() is not implemented correctly on at least Pow-

erPC64.13 We have switched Gforth back to using architecture-specific implementations of this
functionality (except on RISC-V). When implementing your own code-copying compiler, check if
__builtin___clear_cache() is compiled to non-empty code on each architecture that requires
special code to make the caches consistent. If it compiles to non-empty code, that code will hope-
fully be correct.

13https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93811
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Another problem with such architectures is multi-threading: The code-generating thread must
ensure that the D-cache lines are written to a common memory, and then the code-executing
threadsmust invalidate these regions in the I-cache (to get rid of stale I-cache lines); due to prefetch-
ing and branch prediction, this may even be necessary if code in the address range has never been
executed.
Until nowwe have ignored this problem, and relied on our luck. Typically Gforth programs only

start subthreads after finishing compiling the source code (and thus code generation), which may
explain why we have not seen any problems from that. A system with on-demand code generation
(the narrow meaning of JIT) may be more likely to encounter such problems, however.

5.7 Spectre
GCC offers mitigations against Spectre v2 [KHF+19]. While all of these mitigations are expensive,
because they disable indirect-branch prediction, the option -mindirect-branch=thunk-inline
is less expensive than -mindirect-branch=thunk, because the latter makes the code snippets non-
relocatable, so every VM instruction performs an indirect branch, while with the former option
the relocatability of the code snippets is not affected, resulting in fewer indirect branches and
therefore less slowdown.
On a Ryzen 3900X, we see slowdowns by a factor of 2.1–7.6 from using

-mindirect-branch=thunk-inline and slowdown factors of 7.5–18.1 from using
-mindirect-branch=thunk.

However, if you want to implement your programming language with Spectre mitigations, you
will prefer approaches such as copy-and-patch compilation that avoid performing somany indirect
branches. You will also want to use mitigations against other Spectre vulnerabilities (e.g., specula-
tive load hardening [ZBC+23] against Spectre v1), which will introduce additional slowdowns for
any approach, but unfortunately, these other mitigations require more work than just setting a C
compiler flag.

5.8 Control-flow protection
There are exploit techniques such as return-oriented and jump-oriented programming that work
by returning or jumping to arbitrary code. To make it more difficult to use these techniques, ar-
chitectures and compilers offer ways to check that branches and returns only jump to targets that
the compiler had in mind. E.g., gcc with the option -fcf-protection=full inserts an endbr64
instruction at every indirect-branch target (i.e., every label in engine()), and the CPU can be told
to report an error on an indirect branch to some other code. Endbr64 is an AMD64 instruction,
some other architectures have similar features.
This workswith code copying: It copies the endbr64 instruction to those places that the dispatch

code will later indirect-branch to (and to additional places).
We use -fcf-protection=none in Gforth, however, because Gforth offers enough gadgets14

already at the intended targets of indirect branches: All the VM instructios; moreover, Gforth and
its VM is a low-level language that allows arbitrary memory access within the process. So a Gforth
program that is exposed to untrusted input has to successfully defend against an attacker at the
front line (source-level bounds checks etc.) and cannot make life harder for the attacker who has
breached the front-line defense.
However, if your language is better suited to defense-in-depth, you can enable

-fcf-protection=full, and they will work with code copying. This feature may cost a little

14In the context of return-oriented and jump-oriented programming, a gadget is a machine-code sequence that an attacker
may want to return/jump to.
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performance, though: All the endbr64 instructions need to be decoded and executed. In a small
experiment with Gforth on a Ryzen 8700G (Zen4), we saw an increase in instruction count by a
factor 1.45 and an increase in cycle count by a factor 1.04 from -fcf-protection=full. Narrower
processors may see a bigger slowdown (the instructions per cycle on Zen4 increased from 3.83 to
5.34). VM implementations with more machine instructions per VM instruction will see a smaller
effect.

5.9 Clang
Clang supports “Labels as Values”, and Gforth is built with clang on platforms where GCC is not
available. However, using Clang poses a number of problems:

• Clang wants to understand the assembly language in asm statements, and stops compiling
when it sees asm("SKIP4"). One can work around that, and that is done in the ports that
need clang, but we have not done that for the experiments on Debian Linux in the following.

• Clang takes much longer than gcc to compile Gforth’s engine() and also needs more
memory. As an example, for gforth-itc (an indirect-threaded-code Gforth without code
copying nor other optimizations, and therefore without SKIP4), on a Ryzen 5800X gcc-
12.2 takes 3s and 346MB to compile engine(), while clang-14.0.6 takes 699s and 5603MB.
For engine() for gforth-fast (with all optimizations enabled), clang takes 3399s and
18264MB before it stops compiling because of SKIP4 (gcc takes 26s and 1804MB).

• Clang generates a lot of register and memory shuffling code, similar to what we have seen
with gcc-3.0. As a result, runnung the small benchmarks on Clang-compiled gforth-itc
executes 6.4 times more AMD64 instructions than on GCC-compiled gforth-itc and con-
sumes 4.2 times more Ryzen 5800X cycles.

As a result, Gforth selects GCCwhenever it can.We expect that the clang compilation speedwill
be a problem for other code-copying compilers. The bad code generation may be less pronounced
in language implementations that rely less on copy propagation than Gforth. Clang may be more
viable when using tail calls instead of using one function and “Labels as Values” (see Section 7.1).

6 OS ISSUES
Over the years operating systems have restricted executing dynamically-generated code more and
more. In the beginning, all memorywas allocatedwith read, write, and execute (RWX) permissions;
later, malloc() only allocated RW memory, and one has to use mmap() to get RWX memory.
Recently, some operating systems (in partcular MacOS on Apple silicon) do not serve mmap()

calls that ask for RWX memory (this restriction is also known as W^X). This is a problem for all
systems with run-time code generation, not just code-copying compilers, but, e.g., Java JITs as
well. For a single-threaded language implementation, one can mprotect() the memory toWwhen
generating the code, and to X when executing it, but that does not work for multi-threaded code,
unless you want to start a new page whenever you generate a new piece of code.
MacOS provides a MacOS-specific API for JIT compilers that supports switching the memory

into W in the code-generating thread and keeping it X in the other threads, and Bernd Paysan has
actually invested the time to use this API.
Several of the BSDs also has W^X by default, but allows to mark binaries such that RWX works.

The command for marking the binary is short, but specific to the BSD variant.15
An approach that may work without special APIs is to have the code generation in one pro-

cess and the execution in a different process, both mapping the same memory, but with different
permissions. Another option may be to map the same memory within one process twice, at one
15https://www.reddit.com/r/BSD/comments/10isrl3/notes_about_mmap_mprotect_and_wx_on_different_bsd/
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address range with W permission, and at the other address range with X permission. We have not
tried either approach.
If all else fails or you don’t want to jump through the hoops that these operating systems put

up, code-copying based on threaded code always allows you to fall back to plain threaded code,
which works fine on operating systems with the W^X restriction. E.g., Gforth-0.7 (which was not
specifically designed for this circumstance) automatically falls back to plain threaded code on
MacOS on Apple silicon: the mmap() call for allocating the code memory fails, so Gforth-0.7 falls
back to using malloc(), and because that does not produce executable memory on modern OSs,
Gforth-0.7 turns off dynamic code generation.

7 ALTERNATIVE APPROACHES
In this section we describe approaches that are interesting but that are not implemented in pro-
duction Gforth.

7.1 Tail calls
Instead of putting all VM-instruction implementations in one function and using goto * for threaded-
code dispatch, one can also put each VM instruction implementation in a separate function and
use optimized tail-calls for threaded-code dispatch, as follows:
typedef void (*vm_inst)(void **ip, long *dsp, long tos);

void lit(void **ip, long *dsp, long tos)
{

... payload including ip update ...;
(*(((vm_inst *)ip)[0]))(ip,dsp,tos);

}

The last line of the function performs the threaded-code dispatch. The tail-call must be optimized
into a jump, otherwise the C stack grows and eventually overflows. When we first considered this
approach [Ert95], GCC did not tail-call optimize such code, but in the meantime it does, as does
Clang [XK21]; Clang even provides a way to require that a call is tail-call-optimized, and will
report an error if it cannot meet this requirement.
The VM registers are passed as parameters, at least as long as the calling convention supports

passing them in machine registers. With gcc, additional VM registers could be stored in global
explicit register variables; on AMD64 this results in 12 general-purpose and 8 floating-point regis-
ters available for VM registers. Clang does not support explicit register variables, but it supports
using a calling convention for these functions and calls that uses as many registers as possible for
parameter-passing.
So for dealing with VM registers efficiently, one has to pass VM-registers in parameters or keep

them in global register variables with compiler-dependent and ABI-dependent code, but that is a
relatively small effort.
With the tail-calling approach, there is a fixed allocation of VM registers to machine registers,

either coming from the position in the parameter list, or from the explicit register allocation.
We expect that the VM instruction implementations can be compiled faster and with less mem-

ory with the tail-calling approach, because the compiler will hopefully not try to perform data-flow
analysis between the functions, while it tries to do it when the implementations are all contained in
one function.We can then squander the compilation speed gain on introducingmore code snippets,
for various optimization purposes (Xu and Kjolstad report using 98831 code snippets [XK21]).
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Another benefit is that we should see no or little of the register-and-memory shuffling that we
see with Clang, or with gcc without -fno-tree-vectorize.
So far you have only seen how tail calls can be used to implement threaded code. How can it be

used for code-copying compilation?
In order to do that, we need a way to get rid of the dispatch part of the implementation. Unfortu-

nately, compilers tend to mix the instructions from the payload part with those from the dispatch
part; just inserting a label between them will not work, because there is nothing that jumps to this
label. Maybe an asm statement can be made to act as a barrier, but preliminary experiments failed
to produce satisfying results.
One way that may be more promising is to have, in addition to functions that end in a threaded-

code dispatch (to have a fallback option), variants intended only for code copying that end in a
direct [XK21]) or indirect tail-call without threaded-code dispatch. On many architectures this is
just one instruction, that must be last in the function. However, there are exceptions: Some archi-
tectures have delayed branches (HPPA,MIPS, SPARC); some architectures require two instructions
for indirect branches (PowerPC, IA-64). In some programming models, a direct jump to a function
is expressed as an indirect jump to a target loaded from the global offset table (GOT), and as a
result the direct jump also is expressed with more than one instruction.
Once we have solved the problem of keeping the payload separate from the tail call, how do we

know where the tail call starts so that we can use the code between the start of the function and
this instruction as code snippet? Xu and Kjolstad extract the function size (and the code) from the
object file (see Section 7.2), and apparently use their own architecture-specific knowledge about
the size of the last instruction to determine where it starts. A way to determine the size of this last
instruction may be to have a function that performs only this tail-call, and look at its size.

7.2 Snippets from object files
Gforth extracts code snipets from the executable at run-time and has some startup overhead while
it examines all the code snippets for relocatability and performs its table setup.
An alternative is to extract code snippets from object files [NHCL98, XK21] at system build time

using the Binary File Descriptor library (GNU BFD). One advantage of this approach is that the
object file contains additional information, such as the function size, or linkage information for
symbols external to the object file.

7.3 Copy-and-patch compilation
Gforth accesses immediate operands and control-flow information through IP. This requires a
register for IP, results in less efficient accesses to immediate operands and less efficient control
flow than with ordinary compilers, and requires keeping the VM code around.
An alternative is to have code snippets that contain dummy immediate arguments and perform

control flow directly to dummy targets, and then patch the constants or target addresses in these
code snippets with the actual values, resulting in copy-and-patch compilation.
One approach for copy-and-patch compilation has been based on using the linkage information

in object files [NHCL98, TCL+00, XK21]. References to external symbols are used for patchable
immediate operands and patchable control-flow targets. The linkage information describes where
to patch and how to patch (e.g., absolute or relative address). This requires some architecture/ABI-
specificwork, but ABIs have a finite number of relocation types (e.g., 52 in theAMD64ABI [LMG+])
and only a few are actually used in the code snippets.
However, by refering to an external symbol the copy-and-patch compiler usually cannot patch

the immediate operand of instructions like RISC-V’s addi. The external symbol is a 64-bit (or
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32-bit) value, while the immediate operand of addi is 12 bits long, so the addition of a constant
(whatever its size) is compiled to several instructions.

Another approach is to start with code snippets delimited by labels in one C function, like
Gforth’s code copying uses, but perform patching in addition [VA04, EG04b].
We implemented copy-and-patch compilation for Gforth in a prototype for IA-32 and PowerPC

using the latter approach [EG04b]. This work was based on Gforth’s approach of extracting code
snippets from the executable at system startup time. The engine() function was compiled thrice,
twice with the same immediate arguments, and once with different immediate arguments. The
first two versions were compared to determine relocatability, the third version was compared to
find out the placeholders of the immediate arguments.
This approach can make use of the RISC-V addi instruction, but needs to fall back to code that

uses several instructions when the immediate operand becomes too large. It needs quite a bit of
knowledge about the instruction encodings, in particular, the sizes of the immediate-operand fields.
We considered determining the encoding and size by varying the immediate operands a lot more,
but did not implement that idea; dealing with each architecture manually is probably less work.
We originally intended to turn this copy-and-patch compiler into a production engine for Gforth,

but in those years several GCC releases resulted in falling back to threaded code, so the copy-and-
patch approach looked too brittle, and we let it bit-rot. Later, the rethoric by the advocates of C
code without undefined behaviour kept the distrust in GCC high. If we had continued to maintain
this engine, maybe we could now report on its success and the hurdles we had to overcome. Or
maybe it would have been a bridge to far.

8 RELATED WORK
GCC-2.0 (released February 1992) introduced “Labels as Values”, which not only proved useful
for implementing threaded code (we started the Gforth project[Ert93] in July 1992), but also for
compiling by copying compiler-generated code snippets between two labels, with all the code
snippets being within a function. This method was first outlined by Rossi and Sivalingam [RS96,
Section 2.5], who refer to an unpublished discussion between Xavier Leroy and Kenneth Oksanen.
Piumarta and Riccardi provided a more elaborate treatment [PR98], with deduplication of code
sequences.
Ertl and Gregg implemented code-copying in Gforth, and in the beginning the main benefit was

in indirect branch prediction accuracy [EG03a, EG03b, CEG07]; it turned out that leaving away
deduplication (or conversely, introducing replication, as we framed it) helped the branch predictors
at the time. Indirect branch predictors have improved a lot in general-purpose processors [RSS15],
but code copying still provides a good speedup.16
Once you have code copying, you can eliminate instruction-pointer (IP) updates, either by leav-

ing away the unneeded VM instruction slots [PR98], or by replacing several IP updates with a
combined one [EP24]. While IP updates play a minor role for performance on CPUs from the
2000s, they can be the decisive bottleneck on loop-dominated benchmarks in the 2020s.
Another optimization that was facilitated by code copying is multi-state stack caching [Ert95,

EG04a, EG05].
Tempo is a partial evaluator that uses code copying and patching by extracting information from

object files [NHCL98]; Tempo was later used to specialize an interpreter into a compiler [TCL+00].
Iliasov [Ili03] describes a copy-and-patch compiler with a minimal patching component: Only

literals need to be patched; control flow is performed by performing indirect jumps to addresses
provided as literals.

16See Section 2.1 and http://www.complang.tuwien.ac.at/anton/interpreter-branch-pred.txt.
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QEMU is a full-system emulator. It is a production system with a long history, and has many
more users than Gforth. QEMU can emulate machines with a different instruction set than the host
machine. It uses dynamic translation techniques for that, originally implemented in its Dyngen
component [Bel05] using code-copying and patching, similar to what we described in Section 7.2
and 7.3. But Dyngen uses ordinary functions, not tail-calling functions, and has to get rid of the
function prologue and epilogue. Dyngen is gcc-3.x-specific, and it apparently was too difficult to
adapt it to newer gcc versions or other compilers, so it was replaced with TCG in QEMU-0.10.0
released in 2009. TCG is based on QOP by Paul Brook, who described it as “Hand written code
generator”17, so TCG probably is not based on copying and pasting compiler-generated code.
In Gforth we have dealt with changes in GCC by finding workarounds, or, for versions where

we were not successful, by falling back to threaded code. Another approach is to actually define
the properties that a compiler’s code generation should have to support code copying; then modify
a compiler to provide those properties (when asked for it), and report an error if it fails to provide
the properties. This approach has been explored by Prokopski and Verbrugge [PV07, PV08], but
their patches have not been integrated into GCC.
Several code-copying JavaVM implementations have been implemented, among them SableVM

[GH03] and the Cacao interpreter [ETK06]. A particular challenge solved by these implementa-
tions was quickening of VM instructions, where VM instructions rewrite themselves into faster
code on first execution. SableVM stopped being maintained after the research project ended (last
release 2007). The Cacao interpreter bit-rotted while the main thrust of Cacao continued to use
conventional code generation technology.
Maxine is a Java VM implementation with two-level compilation (baseline and optimizing com-

piler), where the baseline compiler is a copy-and-patch compiler that uses templates written in Java
and where the code is generated by the optimizing compiler (which uses conventional compiler
techniques) or by HotSpot [WHV+13].
Xu and Kjolstad implement two copy-and-patch compilers: One that directly compiles from the

abstract syntax tree (AST)without going through a VM and one forWebAssembly. Their technique
works by having each code snippet (called stencil in the paper) in a tail-calling function with
references to external symbols as placeholders for patching, and extracting the code snippets from
object files. They use 1666 code snippets for the WebAssembly compiler, and 98831 code snippets
for the AST compiler; the latter is notable, because it is beyond practical for the technique where
all code snippets are in one function.

9 CONCLUSION
Code-copying compilers make retargeting of the compiler much easier by using code snippets
coming from a different compiler. Gforth demonstrates that code-copying without patching can
produce code with similar performance as a compiler with a hand-written architecture-specific
code generator. Gforth has used code copying since 2003, on many architectures, and has dealt
with many GCC versions in those years. If all else fails, Gforth can fall back to threaded code, but
it usually does not have to.
Copy-and-patch compilation promise an improvement in performance over copying without

patching (as in Gforth) at a moderate increase in architecture-specific code. However, while there
have been a number of publications about this technology, no production system is known to us
that currently uses it.

17https://qemu-devel.nongnu.narkive.com/bCtjCaPs/hand-written-code-generator-2

33



22 M. Anton Ertl and Bernd Paysan

REFERENCES
[Bel73] James R. Bell. Threaded code. Communications of the ACM, 16(6):370–372, 1973.
[Bel05] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In Freenix Track of Usenix Annual Technical

Conference, pages 41–46, 2005.
[CEG07] Kevin Casey, M. Anton Ertl, and David Gregg. Optimizing indirect branch prediction accuracy in virtual

machine interpreters. ACM Transactions on Programming Languages and Systems, 29(6):37:1–37:36, October
2007.

[EG03a] M. Anton Ertl and David Gregg. Optimizing indirect branch prediction accuracy in virtual machine inter-
preters. In SIGPLAN Conference on Programming Language Design and Implementation (PLDI’03), 2003.

[EG03b] M. Anton Ertl and David Gregg. The structure and performance of Efficient interpreters. The Journal of
Instruction-Level Parallelism, 5, November 2003. http://www.jilp.org/vol5/.

[EG04a] M. Anton Ertl and David Gregg. Combining stack caching with dynamic superinstructions. In Interpreters,
Virtual Machines and Emulators (IVME ’04), pages 7–14, 2004.

[EG04b] M. Anton Ertl and David Gregg. Retargeting JIT compilers by using C-compiler generated executable code. In
Parallel Architecture and Compilation Techniques (PACT’ 04), pages 41–50, 2004.

[EG05] M. Anton Ertl and David Gregg. Stack caching in Forth. In M. Anton Ertl, editor, 21st EuroForth Conference,
pages 6–15, 2005.

[EGKP02] M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan. vmgen—a generator of efficient virtual machine
interpreters. Software—Practice and Experience, 32(3):265–294, 2002.

[EP24] M. Anton Ertl and Bernd Paysan. The Performance Effects of Virtual-Machine Instruction Pointer Updates.
In Jonathan Aldrich and Guido Salvaneschi, editors, 38th European Conference on Object-Oriented Program-
ming (ECOOP 2024), volume 313 of Leibniz International Proceedings in Informatics (LIPIcs), pages 14:1–14:26,
Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[Ert93] M. Anton Ertl. A portable Forth engine. In EuroFORTH ’93 conference proceedings, Mariánské Láznè (Marien-
bad), 1993.

[Ert95] M. Anton Ertl. Stack caching for interpreters. In SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’95), pages 315–327, 1995.

[Ert14] M. Anton Ertl. How to get rid of C. In 30th EuroForth Conference, pages 63–65, 2014.
[Ert24] M. Anton Ertl. Interpreter vs. compiler performance at run-time. In Tagungsband des Jahrestreffens 2024 der

GI-Fachgruppe “Programmiersprachen und Rechenkonzepte”, INSIGHTS — Schriftenreihe der Fakultät Technik,
pages 7–12, 2024.

[ETK06] M. Anton Ertl, Christian Thalinger, and Andreas Krall. Superinstructions and replication in the Cacao JVM
interpreter. Journal of .NET Technologies, 4:25–32, 2006. Journal papers from .NET Technologies 2006 conference.

[GH03] Etienne Gagnon and Laurie Hendren. Effective inline-threaded interpretation of Java bytecode using prepara-
tion sequences. In Compiler Construction (CC ’03), volume 2622 of LNCS, pages 170–184. Springer, 2003.

[Ili03] Alex Iliasov. Templates-based portable just-in-time compiler. SIGPLAN Notices, 38(8):37–43, August 2003.
[KHF+19] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,WernerHaas, MikeHamburg, Moritz Lipp,

StefanMangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative
execution. In 40th IEEE Symposium on Security and Privacy (S&P’19), 2019.

[LMG+] H.J. Lu, Michael Matz, Milind Girkar, Jan Hubička, Andreas Jaeger, and Mark Mitchell, editors. System V
Application Binary Interface — AMD64 Architecture Processor Supplement (With LP64 and ILP32 Programming
Models).

[NHCL98] François Noël, Luke Hornof, Charles Consel, and Julia L. Lawall. Automatic, template-based run-time spe-
cialization: Implementation and experimantal study. In IEEE International Conference on Computer Languages
(ICCL ’98), pages 123–142, 1998.

[PR98] Ian Piumarta and Fabio Riccardi. Optimizing direct threaded code by selective inlining. In SIGPLAN ’98
Conference on Programming Language Design and Implementation, pages 291–300, 1998.

[PV07] Gregory B. Prokopski and Clark Verbrugge. Towards GCC as a compiler for multiple VMs. In Proceedings of
the GCC Developers’ Summit, pages 117–129, 2007.

[PV08] Gregory B. Prokopski and Clark Verbrugge. Compiler-guaranteed safety in code-copying virtual machines. In
Compiler Construction (CC’08), pages 163–177. Springer LNCS 4959, 2008.

[RS96] Markku Rossi and Kengatharan Sivalingam. A survey of instruction dispatch techniques for byte-code inter-
preters. Technical Report TKO-C79, Faculty of Information Technology, Helsinki University of Technology,
May 1996.

[RSS15] Erven Rohou, Bharath Narasimha Swamy, and André Seznec. Branch prediction and the performance of
interpreters — don’t trust folklore. In Code Generation and Optimization (CGO), 2015.

34



Code-Copying Compilation 23

[TCL+00] Scott Thibault, Charles Consel, Julia L. Lawall, Renaud Marlet, and Gilles Muller. Static and dynamic program
compilation by interpreter specialization. Higher-Order and Symbolic Computation, 13(3):161–178, September
2000.

[VA04] Benjamin Vitale and Tarek S. Abdelrahman. Catenation and specialization for Tcl virtual machine performance.
In IVME ’04 Proceedings, pages 42–50, 2004.

[WHV+13] Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick Jordan, Laurent Daynès, and Douglas
Simon. Maxine: An approachable virtual machine for, and in, Java. ACM Transactions on Architecture and
Code Optimization, 9(4):30:1–30:24, January 2013.

[XK21] Haoran Xu and Fredrik Kjolstad. Copy-and-patch compilation. Proc. ACM Program. Lang., 5(OOPSLA):136:1–
136:30, October 2021.

[ZBC+23] Zhiyuan Zhang, Gilles Barthe, Chitchanok Chuengsatiansup, Peter Schwabe, and Yuval Yarom. Ultimate SLH:
Taking speculative load hardening to the next level. In 32nd USENIX Security Symposium (USENIX Security 23),
pages 7125–7142, Anaheim, CA, August 2023. USENIX Association.

35



36



Designing Real-time Mission-critical Systems with the
TeamPlay Coordination Language

CLEMENS GRELCK, Friedrich-Schiller-Universität Jena, Deutschland

It is estimated that 98% of the world’s computing devices operate in embedded or cyber-physical systems,
where non-functional properties of program execution, such as energy (budgets), time (budgets), security or
fault-tolerance can be as crucial as functional correctness. The rise of the internet-of-things with the edge-
fog-cloud computing continuum and the increasing heterogeneity and parallelism of computing platforms
rather solidify than change the need for resource-aware software. These developments create new challenges
for software engineering.

We introduce the coordination language TeamPlay that introduces energy, time, security and fault-tolerance
as first-class citizens into the software design process. Following the concept of exogeneous coordination,
TeamPlay enforces a stringent software architecture with strict separation of concerns between operational
detail and application-level design. We discuss selected aspects of the TeamPlay compiler and runtime envi-
ronment as well as the scheduling and mapping problem that today’s heterogeneous parallel architectures
for the cyber part of cyber-physical systems create.

Author’s address: Clemens Grelck, Friedrich-Schiller-Universität Jena, Jena, Deutschland, clemens.grelck@uni-jena.de.
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Advanced Syntax Extensions with

MOSTf l ex iP L
CHRISTIAN HEINLEIN, Hochschule Aalen (University of Applied Sciences), Germany
christian.heinlein@hs-aalen.de

MOSTflexiPL is a general-purpose programming language, whose syntax can be freely extended and cus-
tomized by every programmer. Based on a small set of predefined operators, it is possible to define new opera-
tors with arbitrary syntax, which do not only cover prefix, infix, and postfix operators, but also control struc-
tures, type constructors, and declaration forms. While the author’s KPS 2023 paper gav e an overview of major
concepts of MOSTflexiPL, this paper focuses on more advanced syntax extensions which are possible with
MOSTflexiPL.

1 Introduction

MOSTflexiPL, which is an acronym for modular, statically typed, flexibly extensible programming

language, is a general-purpose programming language, whose syntax can be freely extended and

customized by every programmer. The logo used in the paper title shall express the extreme flexi-

bility provided by the language allowing even fancy constructions unimaginable with conventional

languages. (Therefore, it might be advisable to forget almost all familiar and seemingly necessary

limitations of other languages to be able to fully recognize MOSTflexiPL’s capabilities.)

A basic principle enabling that flexibility is: Everything is an expression, i. e., the application of an

operator to subexpressions, where operators might possess any number of names and operands in

an arbitrary order. Apart from well-known prefix, infix, and postfix operators, this also includes

“circumfix” operators such as (•) (an operand depicted by the bullet sign • enclosed in parenthe-

ses), control structures such as if•then•else•end, declaration forms such as •:• (a name and a

type separated by a colon), and so on. Another basic principle is, that the language provides only a

small set of predefined operators covering arithmetic and logic operations as well as basic control

structures, which can be used to define arbitrary new operators.

As the name indicates, the language is statically typed −− which imposes numerous challenges with

respect to the already mentioned flexibility −−, and it is currently implemented by a compiler and a

run-time system written in C++.

While the author’s KPS 2023 paper [5] gav e an overview of major concepts of MOSTflexiPL, the

primary goal of this paper is to show examples of more advanced syntax extensions which are pos-

sible with MOSTflexiPL. To make the current paper self-contained, several parts of the previous

paper, which are necessary to understand the advanced examples, are repeated.

2 Simple Operator Declarations

To giv e a first example, the following simple declarations define operators computing the square

and the absolute value, respectively, of an integer value x, which can afterwards be applied using

well-known mathematical syntax, e. g., 52
or |2−7|2

:

(x:int) "2" -> (int = x * x);
"|" (x:int) "|" -> (int = if x > 0 then x else -x end)

An operator declaration generally consists of a signature, an arrow and a result declaration, where

the signature is a sequence of names and parameter declarations, while the result declaration con-

sists of a type (the result type of the operator), an equality sign, and the implementation of the oper-

ator, enclosed in parentheses. A name is either a sequence of letters and digits starting with a letter

(denoting exactly this sequence of characters, e. g., abc) or a sequence of arbitrary characters en-
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closed in quotation marks (denoting this sequence of characters without the quotation marks, e. g.,

"2" denoting
2
). A parameter declaration consists of a name, a colon, and a type, enclosed in paren-

theses. Finally, the implementation and the types mentioned above are −− according to the basic

principle mentioned in Sec. 1 −− expressions. (At the moment, types are atomic expressions such as

int or bool, but see Sec. 3 and Sec. 5 for more complex type expressions.)

When an operator application such as |2−7|2
is evaluated at run time, the parameters of the opera-

tor are initialized from left to right by recursively evaluating the corresponding operands, and then

the value of the expression is determined by evaluating the implementation of the operator.

In the examples above, the implementation of the square operator uses the predefined multiplica-

tion operator •*•, while the implementation of the abs operator uses the predefined change sign

operator −• as well as the conditional operator if•then•else•end that returns, according to the

truth value of its first operand, either the value of its second or its third operand.

The semicolon used to separate the two operator declarations is a simple predefined infix operator

that evaluates its left and right operand and returns the value of the latter and, therefore, is typically

used to denote sequential execution of subexpressions. But −− again according to the basic principle

mentioned in Sec. 1 −− since declarations are expressions, too, the semicolon is also used to separate

multiple declarations. In contrast to many other programming languages, however, semicolon must

not be used at the end of a sequence of subexpressions, because it is an infix operator.

To giv e another example, the following declaration defines an operator that recursively computes

the factorial of an integer value n, which can also be applied using well-known mathematical syn-

tax, e. g., 5! or 52!:

(n:int) "!" -> (int = if n <= 1 then 1 else (n-1)! * n end)

The particular challenge for the compiler with a declaration like this is to already recognize and ac-

cept the new syntax defined by the declaration inside of its own implementation to allow recursive

applications of the operator.

3 Constants and Variables

A declaration of the form name : type = init declares a constant with the given name and type

whose value is obtained by evaluating the initializer expression init, e. g., N : int = 52
. If the

type is omitted, e. g., N := 52
, it is automatically deduced from the type of the initializer. If the ini-

tializer is omitted, the constant receives a unique new “synthetic” value that is different from every

other value of the type. While this is of limited usefulness for numeric types such as int, it is cru-

cial for variable types described below and for user-defined types described in the KPS 2023

paper [5].

For any type T, the type T? denotes memory cells containing values of type T. Therefore, a declara-

tion such as x : T? defines x as a constant referring to a unique new memory cell that contains a

value of type T, i. e., x actually denotes a variable with content type T. The current value contained

in such a variable can be queried with the prefix question mark operator ?•, and it can be changed

with the assignment operator •=!•. The initial value of a variable is nil, which is a predefined val-

ue for any type denoting the absence of a real value, that is different from every other value of the

type. Because a variable with content type T is itself a value of type T?, it might itself be stored in a

variable of type T??. If the content of such a variable is queried prior to any assignment to the va-

riable, the returned value is the nil value of type T?. If the content of this nil variable is queried in

turn, it will be the nil value of type T, and assigning any value to such a nil variable has no effect.
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(This behaviour is roughly comparable to reading and writing the Unix special file /dev/null:

read operations return EOF, i. e., nothing, and write operations are discarded.)

By using variables and the predefined loop operator while•do•end, the factorial operator men-

tioned in Sec. 2 can also be implemented in a more procedural style:

(n:int) "!" -> (int =
f : int?; f =! 1;
i : int?; i =! 2;
while ?i <= n do

f =! ?f * ?i;
i =! ?i + 1

end;
?f

)

In the implementation of the operator, the variables f and i are declared and assigned their initial

values as described above, where i is used as a loop counter running from 2 to n, while f accumu-

lates the factorial value that is finally returned.

4 Optional, Alternative, and Repeatable Syntax Par ts

To provide even more syntactic flexibility, the signature of an operator declaration might also con-

tain optional, alternative, and repeatable parts using well-known EBNF syntax.

For example, the following declaration defines a variadic maximum operator that can be applied to

any number of operands, e. g., max of 1, max of 1 and 2, max of 1 and 2 and 3, and so on:

max of (x:int) { and (y:int) } -> (int =
m : int?; m =! x;
{ if y > ?m then m =! y end };
?m

)

According to EBNF, the curly brackets in the signature indicate that an application of this operator

might contain the word and followed by an operand corresponding to the parameter y any number

of times (zero or more). To access the different values of this parameter in the implementation of

the operator, a corresponding curly bracket operator {•} is provided there, whose operand is re-

peatedly evaluated for every value of y. For the particular application max of 1 and 2 and 3 this

means, that the variable m declared in the implementation is initialized with the value of x (i. e., 1),

and then the if expression inside the curly brackets is evaluated in turn for y equal to 2 and to 3,

changing the value of the variable m to 2 and to 3, respectively. Finally, the resulting value of m is

returned.

To giv e another example, the following operator performs arbitrary calculations consisting of addi-

tions and subtractions, e. g., calc minus 1 plus 2 or calc 1 minus 2 plus 3:

calc [minus] (x:int) { (plus|minus) (y:int) } -> (int =
res : int?;
res =! [-x | x];
{ res =! (?res + y | ?res - y) };
?res

)
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In addition to the curly brackets denoting a repeatable part, the signature of this operator also con-

tains square brackets denoting an optional part as well as round brackets containing two or more al-

ternative parts separated by vertical bars. To find out in the implementation of the operator, whether

the optional word minus after the word calc is present or not in a particular application of the op-

erator, a corresponding square bracket operator [•|•] is provided, whose first or second operand,

respectively, is evaluated accordingly. Similarly, a round bracket operator (•|•) with two operands

corresponding to the round brackets with two alternatives in the signature is provided, whose first

or second operand is evaluated according to whether the first or second alternative has been chosen

in a particular application of the operator or −− because in this example the round brackets are nest-

ed inside the curly brackets −− in the respective pass through the curly brackets. The result value of

a square or round bracket operator is the value of the operand that has been evaluated, while the re-

sult value of a curly bracket operator is the number of passes through these brackets. Taken togeth-

er, these bracket operators allow the implementation of the operator to exactly determine the struc-

ture of a particular operator application and to process the values of its operands in a rather concise

manner.

Generally speaking, all three kinds of brackets can have any number of alternatives separated by

vertical bars, except that round brackets must contain at least two, because round brackets with just

one alternative are useless. Therefore, the corresponding bracket operators provided in the imple-

mentation of the operator have a corresponding number of operands separated by vertical bars,

where the i-th operand is evaluated if the i-th alternative has been chosen in a particular operator

application or pass through curly brackets. As an exception, an operator corresponding to square

brackets has an additional optional operand, that is evaluated (if it is present) if none of the alterna-

tives has been chosen.

Therefore, the calc operator could also be defined as follows:

calc [minus] (x:int) { plus (y:int) | minus (z:int) } -> (int =
res : int?;
res =! [-x | x];
{ res =! ?res + y | res =! ?res - z };
?res

)

5 Generic Operators

If an optional parameter appears in the type of another parameter of the same operator, its value can

be automatically deduced from the type of the operand corresponding to the other parameter and,

therefore, the former parameter is called a deducible parameter. This can be used to define generic

operators similar to C++ templates and Java generics, for example:

$$ Definition.
[(T:type)] (x:T?) "<->" (y:T?) -> (T? =

z := ?x; x =! ?y; y =! z; y
);

$$ Application.
v1 : int?; v1 =! 1;
v2 : int?; v2 =! 2;
v1 <-> v2

Because v1 and v2 both have type int?, v1 <−> v2 is a correct application of the previously de-

fined swap operator, where the parameters x and y are initialized with the explicit operands v1

42



and v2, respectively, while the optional parameter T is implicitly initialized with the type int caus-

ing the type int? of the operands v1 and v2 to match the type T? of the corresponding parameters

x and y. The implementation of this operator swaps the values contained in the variables x and y
and returns the variable y.

6 Lambda Parameters

6.1 Problem

The following example shows an operator defining the syntax of for loops as well as a typical ap-

plication of the operator:

$$ Definition.
for (var:int?) "=" (lower:int) ".." (upper:int) do

[(B:type)] (body:B) end -> (int =
var =! lower;
while ?var <= upper do

body;
var =! ?var + 1

end
);

$$ Application: Should print the numbers 1 to 10.
i : int?;
for i = 1 .. 10 do

print ?i
end

According to Sec. 2, an application of this operator is evaluated by first initializing its parameters

from left to right with the values of the corresponding operands, that means:

• The Parameter var is initialized with the variable i.

• The parameters lower and upper are initialized with the values 1 and 10, respectively.

• The deducible parameter B is initialized with the type bool of the subexpression print ?i.

• The parameter body is initialized with the value resulting from the evaluation of this subexpres-

sion, which prints the current value nil of the variable i (i. e., a blank line) and returns the bool
value true.

Afterwards, the operator’s implementation is evaluated, which means:

• Variable var (i. e., i) is assigned the value lower (i. e., 1).

• While the value of that variable is less or equal to upper (i. e., 10), the subexpression body;
var =! ?var + 1 is evaluated repeatedly:

The evaluation of the parameter body simply yields its constant value true, i. e., it has no ef-

fect at all. In particular, it does not evaluate the subexpression print ?i.

The evaluation of the assignment var =! ?var + 1 increments the variable var (i. e., i) by 1,

so that its final value after the last iteration will be 11.

In summary that means, that the above application of the for loop does not print the numbers 1

to 10, but just a blank line.
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6.2 Solution

The problem with the above definition of the for operator is, of course, that the subexpression

print ?i is evaluated once before the evaluation of the operator’s implementation, instead of be-

ing evaluated repeatedly during the evaluation of this implementation.

This can be remedied by defining the parameter body as a lambda parameter:

for (var:int?) "=" (lower:int) ".." (upper:int) do
[(B:type)] (\ body -> (B)) end -> (int =

var =! lower;
while ?var <= upper do

body;
var =! ?var + 1

end
);

i : int?;
for i = 1 .. 10 do

print ?i
end

Omitting several technical details, this means:

• In the implementation of the for operator, there is a local operator body defined as

body −> (B).

• The implementation of this local operator is provided by the corresponding operand of an appli-

cation of the operator, i. e., the subexpression print ?i in the above example.

• Because body is now an operator instead of a constant (as in Sec. 6.1), each evaluation of body
inside the while loop causes a new evaluation of of this subexpression which will print the cur-

rent value of the variable i.

• Because the variable var (i. e., i) is incremented in each iteration of the while loop, the above

application of the for operator now in fact prints the numbers 1 to 10 instead of a single blank

line.

In other words, operands corresponding to a lambda parameter are passed unevaluated and will be

evaluated every time the lambda parameter is evaluated during the evaluation of the operator’s im-

plementation.

The backslash resembling a λ character is necessary to distinguish a lambda parameter from a regu-

lar parameter whose type is an operator type:

• An operand corresponding to a lambda parameter \ body −> (B) must be an expression with

type B, which is used as the implementation of an implicitly generated local operator defined as

body −> (B).

• On the other hand, an operand corresponding to a regular parameter body −> (B) must be an ex-

pression that directly yields an operator of a compatible type, i. e., a parameterless operator with

result type B. (This is described in more detail in the KPS 2023 paper [5].)
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7 Lambda Parameters with Parameters

If a lambda parameter −− which actually denotes an operator as described in Sec. 6.2 −− has itself pa-

rameters, they are made visible in the operands corresponding to the lambda parameter, for exam-

ple:

$$ Definition.
for i "=" (lower:int) ".." (upper:int) do

[(B:type)] (\ body (i:int) -> (B)) end -> (int =
var : int?;
var =! lower;
while ?var <= upper do

body ?var;
var =! ?var + 1

end
);

$$ Application: Prints the numbers 1 to 10.
for i = 1 .. 10 do

print i
end

This example differs from the example given in Sec. 6.2 in several important details:

• The for operator defined here requires the fixed name i following the initial name for instead

of an operand yielding an arbitrary variable of type int?. Therefore, no variable is required for

applications of this operator.

• Instead, there is a local variable var defined in the operator’s implementation.

• The lambda parameter body defined here has itself a parameter i with type int and, therefore,

requires an operand of type int (actually ?var) when being applied.

• The operand corresponding to the lambda parameter in the application of the for operator is

print i instead of print ?i, where i is actually the parameter i of the lambda parameter

which is visible in this operand.

• In each evaluation of the lambda parameter body, its parameter i receives the value of the corre-

sponding operand ?var, i. e., the current value of the variable var.

• Because each evaluation of body causes an evaluation of the corresponding operand print i
with the respective value of the parameter i, the entire for loop will again print the numbers 1

to 10.

8 Passing Names to Operators

Of course, the fixed name i used to denote the current iteration value in the for operator defined in

Sec. 7 is somewhat artificial.

To define a more realistic operator that can instead be used with an arbitrary user-defined name, it

is necessary to pass that name to the operator. For that purpose, the fixed name i is replaced with a

parameter named #name with the special type sym, that is in turn used as the name of the parameter

of the lambda parameter body:
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$$ Definition.
for ("#name":sym) "=" (lower:int) ".." (upper:int) do

[(B:type)] (\ body (#name:int) -> (B)) end -> (int =
var : int?;
var =! lower;
while ?var <= upper do

body ?var;
var =! ?var + 1

end
);

$$ Applications.
for j = 1 .. 10 do

print j
end;
for k = 1 .. 10 do

print k
end

This requires some explanations:

• According to Sec. 2, names containing special characters such as # must be enclosed in quotation

marks in a declaration, but used without the quotation marks in applications of the constant, pa-

rameter, or operator defined by the declaration.

• Therefore, #name in the declaration #name:int of the parameter of the lambda parameter body
denotes an application of the parameter defined as "#name":sym.

• If this parameter would be defined as name:sym, the declaration name:int of the parameter of

the lambda parameter body would be ambiguous because name could denote either an applica-

tion of the parameter name with type sym or directly the name name. To avoid such ambiguities,

the names of parameters that shall be used in the declaration of other parameters must contain at

least one special character.

• Expressions with type sym −− in particular applications of parameters with type sym −− can be

used instead of names in the signature of a constant, parameter, or operator declaration. There-

fore, #name:int is in fact a correct parameter declaration.

• Operands corresponding to parameters with type sym can be names as described in Sec. 2 (e. g.,

xyz, "N’" etc.) or arbitrary expressions with type sym, in particular applications of other param-

eters with type sym whose operands are in turn either names or such expressions etc. Therefore,

such operands eventually denote names.

• When an operator that has parameters with type sym is applied, applications of these parameters

are replaced with the names denoted by the corresponding operands.

Therefore, the expression

for j = 1 .. 10 do
print j

end

is processed at compile time as follows:
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• The parameter named #name of the for operator is initialized with the name j.

• The parameters lower and upper are initialized with the values 1 and 10, respectively.

• Before the operand corresponding to the lambda parameter body is parsed, the application

#name of the aforementioned parameter is replaced with the name j, causing the lambda parame-

ter to actually have a parameter j:int which will be visible in the corresponding operand.

• Therefore, print j is a correct subexpression in this context (which would not be the case be-

fore or after the application of the for operator, because the parameter j is not visible there)

which is used as the implementation of the lambda parameter.

At run time, the application of the for operator is evaluated in the same way as in Sec. 7.

9 Vir tual Operators

9.1 Basic Principle

Applications of the following operator consist of an arbitrary type T followed by an arbitrary name,

e. g., int num or bool flag, i. e., they denote declarations of variables num and flag with content

type int and bool, respectively, in languages such as C and Java:

(T:type) ("#name":sym) -> (T? =
#name : T?

)

In fact, the implementation of the operator actually contains a declaration of a variable with name

#name and content type T, which are replaced with the name and type, respectively, which are

passed to an application of the operator. This variable, however, is a local variable which is not visi-

ble outside of the operator’s implementation.

To make it visible there, the above operator might be turned into a virtual operator by simply re-

placing the arrow −> with a double-headed arrow −>>:

(T:type) ("#name":sym) ->> (T? =
#name : T?

)

Again omitting several technical details, an application of a virtual operator such as int num is re-

placed at compile time with the implementation of the operator, i. e., #name : T? in this example,

where applications of the operator’s parameters (#name and T) are in turn replaced with the corre-

sponding operands (num and int, respectively), finally yielding the declaration num : int? which

logically replaces the original expression int num. Therefore, the variable num defined by this dec-

laration will be visible in the sequel:

int num;
num =! 1;
print ?num
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9.2 Haskell-like Function Definitions

Haskell provides a very concise syntax for function definitions and applications, e. g.:

$$ Definition.
square x = x * x

$$ Application.
square 5

Doing the same with MOSTflexiPL’s predefined declaration syntax is much more verbose:

$$ Definition.
square (x:int) -> (int = x * x);

$$ Application.
square 5

By omitting the parameter and result type of the square operator, which can be automatically de-

duced by the compiler, the definition becomes a little bit shorter:

square (x:) -> (= x * x)

To make it as concise as in Haskell, a virtual operator typically defined in a library can be used:

$$ Virtual operator defined in a syntax library.
("#func":sym) ("#par":sym) "="

[(P:type) (R:type)] (\ impl (#par:P) -> (R)) ->> (=
#func (par:P) -> (R = impl par)

);

$$ Application of the virtual operator
$$ to define function square.
square x = x * x;

$$ Application of the function square.
square 5

At compile time, the expression square x = x * x is recognized as follows as an application of the

virtual operator defined before:

• Its parameters #func and #par are initialized with the names square and x, respectively.

• Before the operand x * x corresponding to the lambda parameter impl is parsed, #par is re-

placed with the name x in the declaration of its parameter, making the parameter x with type P
(which is currently unknown, but will be deduced later) visible in this operand.

• Because x with unknown type P as well as the predefined multiplication operator (int) "*"
(int) −> (int) are visible, x * x is recognized as a correct subexpression with type int by

deducing P as int along the way.

• This subexpression is used as the implementation of the lambda parameter impl deducing R also

as int along the way.

Because the operator is virtual, its application is replaced at compile time with its implementation,

in which applications of the operator’s parameters (#func, P and R) are in turned replaced by the

corresponding operands, yielding the declaration

square (par:int) -> (int = impl par)
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where impl par is an application of the following local operator that is implicitly generated for the

lambda parameter impl using the operand x * x as its implementation:

impl (x:int) -> (int = x * x)

In summary, square x = x * x is replaced with a declaration of an operator square (int) −>
(int) whose implementation computes the square of its parameter value and, therefore, this opera-

tor can be used in the sequel, e. g.:

square 5

9.3 Type Aliases

Another important use case of virtual operators, which cannot be achieved with normal operators,

are type aliases.

If, for example, a programmer wants to define an alternative syntax var of T for variable types, be-

cause he dislikes the predefined syntax T?, this can be easily achieved with the following virtual

operator:

$$ Definition.
var of (T:type) ->> (type = T?);

$$ Application.
x : var of int;
x =! 1;
print ?x

Because an application of a virtual operator is replaced at compile time with the operator’s imple-

mentation where applications of the operator’s parameters are in turn replaced with the correspond-

ing operands, var of int is replaced with int? and, therefore, x has actually type int?.

If the operator var of • would be a normal, non-virtual operator, the expression var of int
would still return the type int? at run time, but at compile it would be different from int? and,

therefore, the expressions x =! 1 and ?x would not be type-correct, because they require an

operand with type T? for some type T.

10 Outlook

During the last years, MOSTflexiPL has reached a certain degree of maturity and stability, which

allows it to be employed for teaching purposes and for the implementation of small to medium-

sized real world projects. In particular, the compiler messages in case of errors and ambiguities

have been significantly improved during the last months. Furthermore, the compiler has been proto-

typically integrated into Microsoft’s Visual Studio Code Editor and into the well-known text editor

VI Improved (VIM) to make practical program development with MOSTflexiPL more convenient.

A topic that is neither covered by the KPS 2023 paper [5] nor by this paper are visibility declara-

tions, which are required to define user-defined scoping rules and locally confined syntax exten-

sions.

To make the language even more flexible and powerful, several features are still desirable:

• Meta-operators, which are required to pass the values of a repeatable parameter to another opera-

tor accepting repeatable parameters.

• User-defined literals, e. g., for types representing date and time values.
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• User-defined whitespace and comments to allow any desired syntax for both block and line com-

ments.

• Dynamic redefinitions of operators [4], which allow amongst other things strictly modular exten-

sions of existing code and thus support unanticipated software evolution.

• Basic operators for parallel execution and synchronization, which can then be used to define

more convenient and advanced constructs for parallel programming.

Some of these features have already been developed and prototypically implemented in earlier ver-

sions of the compiler, but have not been integrated into the current compiler yet.

11 Related Work

During the history of programming language development, the idea of an extensible programming

language has appeared every now and then.

One of oldest and most well-known examples is Lisp [9] with its different dialects and flavors.

Similar to MOSTflexiPL, Lisp does neither distinguish between operators and functions nor be-

tween predefined and user-defined operators/functions. By defining new functions −− or macros,

whose syntactic appearance is identical to that of functions −− a programmer is actually extending

the language all the time. Another parallel to MOSTflexiPL is the fact that language extensions are

defined in the language itself, and that a very small language core is sufficient for that purpose.

However, there are also essential differences: First of all, Lisp does not possess a static type system.

Furthermore, Lisp expressions must always be parenthesized, which significantly restricts the pos-

sibilities for defining new syntax. Finally, MOSTflexiPL does not have a “procedural” macro en-

gine, i. e., no user code will be executed at compile time in order to perform syntactic transforma-

tions. In contrast, the compile time transformations provided by virtual operators are completely

declarative as well as statically type-safe. In summary, MOSTflexiPL has considerable advantages

over Lisp (complete syntactic freedom and static type safety), while the deliberately omitted proce-

dural macro facility has not been perceived as a major limitation yet.

Dylan [3] is a more modern language that has been strongly influenced by Lisp’s ideas. It also sup-

ports syntactic extensibility in the language itself (actually in a rewrite macro system which is an

integral part of the language). Even though the programmer has more freedom than with Lisp’s

simple s-expressions, there are also strict syntactic limitations which cannot be exceeded. In con-

trast, the operator concept of MOSTflexiPL offers virtually unlimited syntactic freedom. Apart

from that, Dylan does not have a static type system either.

Many different languages, e. g., Haskell [7], Prolog [2], and Scala [8], allow the user to extend at

least the syntax of expressions by defining new operator symbols. Since functional languages, just

as MOSTflexiPL, do not distinguish between expressions and statements, the syntax of statements

(e. g., control structures) becomes also extensible in principle. However, the syntax of types and

declarations still remains fixed. In MOSTflexiPL, however, the basic principle “everything is an ex-

pression” is also applied to types and declarations, whose syntax can be extended by means of vir-

tual operators.

An approach whose basic ideas and objectives are almost identical to that of MOSTflexiPL is “π −−

a Pattern Language” [6]. The concept called pattern there −− which is “the only language construct

in π” −− directly corresponds to an operator in MOSTflexiPL: It possesses a syntax, composed of

names (or symbols) and placeholders for operands, and an associated meaning corresponding to the

implementation of a MOSTflexiPL operator. Thus, both approaches provide the same virtually un-

limited syntactic flexibility that ultimately stems from the lack of any predefined grammar.
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A significant difference and advantage of MOSTflexiPL over π is once again the static type sys-

tem, since π is completely dynamically typed. In fact, the endeavour to reconcile extreme flexibility

on the one hand with a maximum of static checkability on the other hand has been and still is one

of the most ambitious challenges in the development of MOSTflexiPL.

Apart from that, MOSTflexiPL provides several other useful facilities not found in π, e. g., im-

plicit and deducible parameters (where the latter are dispensable in a dynamically typed language)

or visibility and exclude declarations which allow, amongst others, user-defined scoping rules and

locally confined syntax extensions.

Finally, MOSTflexiPL might also be considered an adaptive grammar formalism [1, 10]. Because

“everything is an expression,” there is a single non-terminal symbol X denoting expressions. Every

operator declaration induces a new production for X whose right hand side can be derived from the

operator’s signature by treating the operator’s names as terminal symbols and replacing explicit pa-

rameters with the non-terminal X. The type information associated with the parameters and the re-

sult type of the operator can be added as grammar attributes. Visibility declarations control the set

of currently active productions, while exclude declarations can be used to rule out some otherwise

possible derivations.

12 Conclusion

MOSTflexiPL is a programming language currently under development whose syntax can be ex-

tended and customized by its users in a virtually unlimited way, where a rather small number of

core constructs is sufficient to support a broad range of different programming styles. Therefore, it

can be used, amongst others, as an extensible general purpose programming language, but also as a

host language for developing domain-specific languages. It possesses a static type system and is

implemented by a compiler and a run-time system written in C++.
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Programming Joins

FRITZ HENGLEIN, University of Copenhagen, Dänemark

In programming one often has to implement queries such as joins on in-memory data. Joins, and relational
queries in general, have been considered difficult to program efficiently. It turns out they are not.

We show that worst-case optimal joins, also for cyclic joins, are straightforward to program using a few
basic programming techniques usually taught and learned in the first year of a computer science bachelor
program: immutable dictionaries such as hash tries or radix trees, choosing the smallest set to iterate over
when intersecting sets, and iterating over the variables in a join query in any nesting order.

We provide a novel proof of worst-case optimality by amortization, where the execution cost is charged to
the output generated from input that is extended with ghost data. We furthermore show experimentally that
widely used SQL engines generate asymptotically and practically inferior code on fundamental cyclic joins.
For example, for triangle queries on certain sparse input relations, our 10-line standard Python program (or a
corresponding 20 line Haskell program) executes 400 to 50.000 times faster than employing a variety of SQL
engines.

This suggests that dispatching queries on program data to an SQL database engine is sometimes, and we
suspect often, not a good idea for one of themotivations behind language-integrated querying: computational
efficiency.

This is joint work with Changjun Li, Mikkel Kragh Mathiesen and Mads Rehof.

Author’s address: Fritz Henglein, University of Copenhagen, Kopenhagen, Dänemark, fritz@henglein.com.
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Towards Language Product Line Engineering Using Classic
Compiler Generators
Teaching Old Horses New Tricks

THOMAS KÜHN, Martin-Luther University Halle-Wittenberg, Germany

In recent years, research on language product line (LPL) engineering has emerged. Building on
the ideas of modular compiler construction and software product line engineering (SPLE), LPLs
enable language users to choose and pick language features from which a corresponding compiler,
interpreter and/or integrated development environment is composed. While several LPL engineer-
ing approaches showcased their general applicability to individual cases, most approaches rely on
their own especially tailored language workbench. Hence, I aim to identify design principles and
techniques in classic compiler generators that support the development of LPLs. In this talk, I
present ongoing work creating an LPL for the Sample Programming Language (LAX) [22] using
the compiler construction toolkit Eli [10] as a classic compiler generator.

Additional Key Words and Phrases: Compiler Construction, Software Product Lines, Language
Product Lines

Most compilers for programming languages are developed using compiler construction tools
(or language workbenches [7]) that provide various domain-specific specification languages,
e.g., for grammars, attribute equations, or transformation rules, to generate almost all parts
of the compiler. However, as everything is generated, reusing parts of a compiler is gener-
ally to either copying these definitions to another compiler specification or reusing an entire
compilation phase or the whole back-end. To remedy this, researchers focused on modular
compiler constructions, e.g., [9, 11, 17, 16], to establish more fine-grained reusable specifica-
tions. In the past decades, compiler construction tools and language workbenches included
means for systematically reusing compiler specifications, e.g., [6, 19, 21, 4, 2, 8], ultimately
leading to the notion of language components as “a reusable unit encapsulating a poten-
tially incomplete language definition [comprising] the realization of syntax and semantics of
a (software) language.” [3, p. 243]. Building on the ideas of modular compiler construction
and language components, more recently, researchers coined the term language product
line* (LPL), e.g., [5, 24, 13], to denote the systematic development of a set of compilers for
a family of languages by composing reusable language components. Adopting ideas from
software product line (SPL) engineering, language users should be able to choose and pick
needed language features1 from which a corresponding compiler is constructed.

While several LPL approaches appeared over the years, their scope and the level of ab-
straction on which they operate differs. In detail, while many approaches compose languages
on the concrete or abstract syntax level only, e.g. [24, 14, 12, 15], few include the composi-
tion of intermediate or machine code generation, e.g., [3]. Moreover, while some showed their
approaches’ applicability to general programming languages, e.g., [20, 13], many relied on
their own specialized and tailored language workbenches, e.g. [20, 8, 2]. Thus, it is difficult
to identify fundamental underlying principles and techniques for the modular development
and composition of languages uncovered in recent years.
1Following Vacchi and Cazzola [18], language features are either language constructs, e.g., if then else, or
language concepts (without concrete syntax), e.g., recursion.

Author’s Contact Information: Thomas Kühn, Software Engineering and Programming Languages Group,
Martin-Luther University Halle-Wittenberg, Halle, Saxony Anhalt, D-06120, Germany, thomas.kuehn@
informatik.uni-halle.de.
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2 Thomas Kühn

To remedy this, in my ongoing work I aim to answer the following research questions:
• (RQ1) How suitable are classic compiler generators for the creation of an LPL of a

programming language?
• (RQ2) What are fundamental principles and techniques for the modular development

and composition of programming languages?
• (RQ3) What properties must a language component exhibit to be composable with

another component?
In pursuit of answering these questions, I have started to develop an LPL of the Sample

Programming Language (LAX) [22, Appendix A] using the classic compiler construction
toolkit Eli [10]. Eli provides a rich set of domain-specific languages to specify all phases of a
compiler, ranging from concrete and abstract syntax via attribute grammars and definition
tables to code selection and code generation [10]. Moreover, its ability to integrate auxiliary
C code makes it very flexible. Following the fine-grained iterative development approach
proposed by Zimmermann, Kühn, and WeiSSbach [23], I started with an initial compiler
covering the smallest LAX program and systematically implementing language features and
extending the feature model in small increments.2 Thus far, I have followed the iteration
plan outlined in [kuehn2023kps] and employed one of the earliest additive SPL implementa-
tion technique, i.e., preprocessor annotations [1, Cha. 5.3], whereas previously implemented
features as well as the initial compiler version shall not be changed during development.

In this talk, I provide insights into how the different specification languages permit or
hinder modular compiler development. Moreover, I highlight the implementation techniques
used to allow for extending the initial compiler with additional language components, focus-
ing on the composability of the different domain-specific specification languages provided
by the Eli toolkit. I will outline the development of the initial compiler version and the
implementation of the first features, highlighting the employed extension points. In partic-
ular, I will not only focus on grammars for the concrete and abstract syntax but also on
attribute grammars through to code generator specifications. Furthermore, for each compi-
lation phase, I discuss when a corresponding specification or code fragment is composable.

This, in turn, will enable researchers and practitioners to use existing compiler generators
for developing LPLs and extend them with composable specification languages for the indi-
vidual phases. Overall, guiding practitioners towards more modular compilers or full-fledged
language product lines.
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Moreover, I want to thank Edward Sabinus who reworked the iteratively developed LAX
compiler, my work is based on. Last but not least, I thank Elisabeth Fritsch for the many
discussions about the LAX LPL during her masters thesis.

References
[1] Sven Apel et al. Feature-Oriented Software Product Lines: Concepts and Implemen-

tation. Springer, 2013. ISBN: 9783642375200.
[2] Arvid Butting et al. “Systematic composition of independent language features”. In:

Journal of Systems and Software 152 (2019), pp. 50–69.
2This approach is a well-established SPL development approach denoted the reactive approach [1, Cha. 2.4].

56



LPLs using Classic Generators 3

[3] Arvid Butting and Andreas Wortmann. “Language Engineering for Heterogeneous
Collaborative Embedded Systems”. In: Model-Based Engineering of Collaborative Em-
bedded Systems: Extensions of the SPES Methodology. Cham: Springer International
Publishing, 2021, pp. 239–253. ISBN: 978-3-030-62136-0. DOI: 10 .1007/978- 3- 030-
62136-0_11. URL: https://doi.org/10.1007/978-3-030-62136-0_11.

[4] Thomas Degueule et al. “Melange: a Meta-Language for Modular and Reusable Devel-
opment of DSLs”. In: 8th International Conference on Software Language Engineering
(SLE’15). Ed. by Davide Di Ruscio and Markus Völter. Pittsburgh, PA, USA: ACM,
2015, pp. 25–36.

[5] Benjamin Delaware, William Cook, and Don Batory. “Product lines of theorems”. In:
2011 ACM international conference on Object oriented programming systems lan-
guages and applications. 2011, pp. 595–608.

[6] Torbjörn Ekman and Görel Hedin. “The JastAdd System — Modular Extensible
Compiler Construction”. In: Science of Computer Programming 69.1-3 (2007), pp. 14–
26.

[7] Sebastian Erdweg et al. “Evaluating and Comparing Language Workbenches: Exist-
ing Results and Benchmarks for the Future”. In: Computer Languages, Systems and
Structures 44 (2015), pp. 24–47.

[8] Luca Favalli, Thomas Kühn, and Walter Cazzola. “Neverlang and FeatureIDE just
married: Integrated language product line development environment”. In: 24th ACM
Conference on Systems and Software Product Line (SPLC’20): Volume A-Volume A.
2020, pp. 1–11. DOI: 10.1145/3382025.3414961.

[9] Harald Ganzinger. “Increasing modularity and language-independency in automati-
cally generated compilers”. In: Science of Computer Programming 3.3 (1983), pp. 223–
278.

[10] Robert W. Gray et al. “Eli: A complete, flexible compiler construction system”. In:
Communications of the ACM 35.2 (1992), pp. 121–130.

[11] Uwe Kastens and William M. Waite. “Modularity and reusability in attribute gram-
mars”. In: Acta Informatica 31 (1994), pp. 601–627.

[12] Thomas Kühn and Walter Cazzola. “Apples and Oranges: Comparing Top-Down and
Bottom-Up Language Product Lines”. In: 20th International Software Product Line
Conference (SPLC’16). Beijing, China: ACM, 2016, pp. 50–59.

[13] Thomas Kühn, Walter Cazzola, and Diego Mathias Olivares. “Choosy and Picky:
Configuration of Language Product Lines”. In: 19th International Software Product
Line Conference (SPLC’15). Ed. by Goetz Botterweck and Jules White. Nashville,
TN, USA: ACM, 2015, pp. 71–80.

[14] Thomas Kühn et al. “A Metamodel Family for Role-Based Modeling and Program-
ming Languages”. In: 7th International Conference Software Language Engineering
(SLE’14). Lecture Notes in Computer Science 8706. Västerås, Sweden: Springer, 2014,
pp. 141–160.

[15] Manuel Leduc, Thomas Degueule, and Benoit Combemale. “Modular Language Com-
position for the Masses”. In: Proceedings of 11th International Conference on Software
Language Engineering (SLE’18), SLE 2018. Boston, MA, USA: ACM, 2018, pp. 47–59.
ISBN: 9781450360296. DOI: 10.1145/3276604.3276622. URL: https://doi.org/10.1145/
3276604.3276622.

[16] Marjan Mernik and Viljem umer. “Incremental Programming Language Development”.
In: Computer Languages, Systems and Structures 31.1 (2005), pp. 1–16. DOI: 10.1016/
j.cl.2004.02.001.

57



4 Thomas Kühn

[17] Nathaniel Nystrom, Michael R Clarkson, and Andrew C Myers. “Polyglot: An exten-
sible compiler framework for Java”. In: International Conference on Compiler Con-
struction. Springer. 2003, pp. 138–152.

[18] Edoardo Vacchi and Walter Cazzola. “Neverlang: A Framework for Feature-Oriented
Language Development”. In: Computer Languages, Systems & Structures 43.3 (2015),
pp. 1–40. DOI: 10.1016/j.cl.2015.02.001.

[19] Markus Völter and Vaclav Pech. “Language Modularity with the MPS Language
Workbench”. In: 34th International Conference on Software Engineering (ICSE’12).
Zürich, Switzerland: IEEE, 2012, pp. 1449–1450.

[20] Markus Völter et al. “mbeddr: an Extensible C-Based Programming Language and
IDE for Embedded Systems”. In: 3rd Annual Conference on Systems, Programming,
and Applications: Software for Humanity (SPLASH’12). Tucson, AZ, USA: ACM,
2012, pp. 121–140. DOI: 10.1145/2384716.2384767.

[21] Guido H. Wachsmuth, Gabriël D. P. Konat, and Eelco Visser. “Language Design with
the Spoofax Language Workbench”. In: IEEE Software 31.5 (2014), pp. 35–43.

[22] William M Waite and Gerhard Goos. Compiler construction. Springer Science & Busi-
ness Media, 1995. ISBN: 0-387-90821-8.

[23] Wolf Zimmermann, Thomas Kühn, and Mandy WeiSSbach. “(Almost) Agile Develop-
ment of Verified Compilers”. In: 22. Kolloquium Programmiersprachen und Grundla-
gen der Programmierung. Ed. by Thomas Noll and Ira Fesefeldt. AIB-2023-03. 2023,
pp. 176–185. URL: https://publications.rwth-aachen.de/record/972197/files/972197.pdf.

[24] Steffen Zschaler et al. “VML*–a family of languages for variability management in
software product lines”. In: Software Language Engineering: Second International Con-
ference, SLE 2009. Springer. Denver, CO, USA, 2010, pp. 82–102.

58



d2d = XML für Autoren
MARKUS LEPPER, semantics gGmbH, Deutschland

Die Codierung XML hat sich in vielen Bereichen als Standard für die Modellierung und Verarbeitung von
Textdokumenten bewährt.

Auch semi-formale Fließtexte (Berichte, Bedienungsanleitungen, Gedichte, Romane, Briefe) können von
automatischer Verarbeitung profitieren. D2d gibt den Autorinnen solcher Dokumente ein Format, welches
mit wenig syntaktischem Ballast, auch ganz ohne technische Hilfsmittel und mit möglichst geringer Störung
des kreativen Flows erlaubt, in gewohntem Schreibtempo formal-korrekte XML-Dokumente zu notieren.

Weiterhin sollen auch Domain-Experten für ihre Fachgebiete mit einfachen Mitteln verständliche Text-
Typ-Definitionen erstellen können. Für beide Zwecke müssen sehr unterschiedliche avancierte Techniken
kombiniert werden.

Author’s address: Markus Lepper, semantics gGmbH, Berlin, Deutschland, post@mlepper.de.
59



60



Is this a Language Killed by Incremental Improvements?
Python, Can We Help?

STEFAN MARR, University of Kent, United Kingdom

In the Python community, two major players having investing into the future of Python over the past years.
Microsoft’s Faster CPython team pushed ahead with impressive performance improvements for the CPython
interpreter, which has gotten at least 2x faster since Python 3.9 and they have a baseline JIT compiler for
CPython, too. At the same time, Meta is worked hard on making free-threaded Python a reality and bring
classic shared-memory multithreading to Python, without being limited by the still standard Global Inter-
preter Lock, which prevents true parallelism.

Both projects delived major improvements to Python, and the wider ecosystem. So, it’s all great, or is it?
In this talk, I’ll discuss some of the aspects the Python core developers and wider community seem to

not regard with the same urgency as it seems necessary from my personal perspective. Concurrency bugs
scare me, and I strongly believe the Python ecosystem should be scared, too, or look forward to the 2030s
being ”Python’s Decade of Concurrency Bugs”. We’ll start out reviewing some of the changes in observable
language semantics between Python 3.9 and today, discuss their implications, and because of course I have
some old ideas lying around, I’ll propose a way forward. In practice though, this isn’t a small well-defined
research project. So, I hope to find people that might want to follow me down the rabbit hole of Python’s
free-threaded future.

Author’s address: Stefan Marr, University of Kent, Canterbury, United Kingdom, s.marr@kent.ac.uk.
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Bisimulation: Analyzing Divergent Interpreter
Implementations
TIM MATUSSEK, Universität der Bundeswehr München, Germany
STEFAN BRUNTHALER, Universität der Bundeswehr München, Germany

Ensuring semantic equivalence between interpreter implementations poses a fundamental challenge in pro-
gramming language engineering.When reimplementing an interpreter—whether for performance optimization,
platform portability, or security hardening—developers face the problem of verifying that the new imple-
mentation faithfully preserves the semantics of the reference implementation. In the absence of a formal
specification, the reference implementation is the specification. This paper presents a practical bisimulation-
based approach for systematically detecting semantic divergences between interpreter implementations. Our
method executes both interpreters in lockstep, observing bytecode instructions, stack states, and function
invocations at each step. When divergences occur, we aggregate and analyze them to identify root causes in
the interpreter source code. We demonstrate our approach by comparing CPython and GraalPy, revealing
previously unknown semantic differences. Our tooling includes a bisimulation driver, a cross-interpreter
protocol, test case generation, and divergence aggregation infrastructure. Initial results show that bisimulation
provides finer-grained semantic analysis than traditional testing approaches.

Additional Key Words and Phrases: bisimulation, interpreter semantics, Python, CPython, GraalPy, semantic
equivalence, differential testing

1 Introduction
The proliferation of programming language implementations presents a unique verification chal-
lenge. For widely-used languages like Python, multiple interpreters exist: CPython (the reference
implementation), PyPy (a JIT-compiled implementation), GraalPy (part of the GraalVM ecosys-
tem), and MicroPython (for embedded systems). Each implementation makes different trade-offs
regarding performance, memory usage, and platform support, yet all must preserve the language’s
semantics.
The fundamental problem we address is: How can we systematically verify that two interpreter

implementations exhibit equivalent semantics? Traditional approaches rely on test suites, but these
have inherent limitations. Test coverage is bounded, edge cases may remain untested, and a failing
test only provides indirect evidence of the underlying bug. More critically, tests approximate the
specified behavior, whereas bisimulation approximates the implemented behavior—a subtle but
crucial distinction when the reference implementation serves as the implicit specification.

Our approach leverages bisimulation, a well-established technique from concurrency theory, to
analyze behavioral equivalence at the instruction level. By executing both interpreters in lockstep
and observing their internal states, we can detect divergences that might escape conventional
testing. When divergences are found, we aggregate them across many test cases to identify patterns
that point to root causes in the interpreter implementation.

This paper makes the following contributions:
• A practical bisimulation framework for comparing interpreter implementations without
requiring formal specifications
• A protocol for coordinating execution between disparate interpreter architectures (demon-
strated with CPython and GraalPy)
• Techniques for divergence aggregation and root-cause analysis
• Strategies for resynchronization when interpreter instruction sequences diverge structurally

Authors’ Contact Information: Tim Matussek, Universität der Bundeswehr München, Munich, Germany; Stefan Brunthaler,
Universität der Bundeswehr München, Munich, Germany.
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2 Background and Motivation
2.1 The Semantic Equivalence Problem
When implementing a new interpreter for an existing language, developers face a specification
problem. For languages like Python, the formal specification is incomplete—the CPython implemen-
tation effectively is the specification for edge cases and corner behaviors. This creates a verification
challenge: how do we know the reimplementation is correct?

Formal verification against a specification is ideal but often impractical. Recent work by Deshar-
nais and Brunthaler [1] explores verified virtual machines for dynamic languages, but the effort
required is substantial. For many practical scenarios, we need lightweight approaches that can find
semantic divergences without full formal verification.

2.2 Bisimulation
Bisimulation is a foundational concept from process algebra and concurrency theory [2]. Two
systems are bisimilar if they can simulate each other step by step: any action one system can take,
the other can match with an equivalent action, and vice versa. This provides a strong notion of
behavioral equivalence.
We adapt bisimulation for interpreter comparison with a relaxed goal: rather than proving full

bisimilarity, we aim to find divergent behavior. The interpreters execute the same program, and we
observe whether they take equivalent steps. Any divergence indicates a semantic difference worth
investigating.

2.3 Why Not Just Tests?
Traditional testing has fundamental limitations for semantic equivalence checking:

• Coverage bounds:Maximum test coverage is inherently limited; some behaviors remain
unexercised
• Edge case difficulty: Certain bugs (e.g., host floating-point representation differences) are
notoriously hard to test
• Indirect error indication:A failing test reveals that something is wrong but not necessarily
what or where

Bisimulation addresses these limitations by operating at instruction granularity. It observes
actual implemented behavior rather than specified behavior, and divergences directly indicate the
point and nature of the difference.
A key insight motivates our approach: tests approximate the implicit specification of tested

behavior, while bisimulation approximates the implicit specification of implemented behavior.

3 Approach
3.1 Architecture Overview
Our bisimulation framework consists of four main components: (1) a bisimulation driver that
coordinates execution, (2) a protocol for interpreter control and observation, (3) a test case builder
for generating input programs, and (4) a divergence aggregator for analysis. The driver orchestrates
lockstep execution: both interpreters execute one instruction, report their observations, and the
driver compares them before proceeding.

Figure 1 illustrates the high-level architecture. The bisimulator sits between the two interpreters,
receiving protocol messages from each and coordinating their execution.
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Interpreter A←→ Protocol←→ Bisimulator←→ Protocol←→ Interpreter B
(Reference) (Driver) (Reimplementation)

Fig. 1. Bisimulation architecture: the driver coordinates lockstep execution between interpreters via a common
protocol.

3.2 Observable Behavior
At each step, we observe three aspects of interpreter state:

• Instructions: The bytecode instruction being executed (accounting for different instruction
sets)
• Stack state: The operand stack contents, particularly the top-of-stack value
• Function calls: Entry and exit of function invocations

We classify divergences into instruction divergences (the interpreters execute semantically differ-
ent operations) and stack divergences (the interpreters produce different values).

3.3 Divergence Analysis
A single divergence is rarely informative in isolation. We aggregate divergences across many test
case executions, looking for patterns. For instance, if stack divergences consistently occur after
BINARY_OP instructions with floating-point operands producing values like 1.02 vs. 1.019, this
pattern suggests a floating-point handling difference in the interpreter’s fast-path code.

Our analysis pipeline includes: (1) aggregation by instruction type and operand patterns, (2) fil-
tering of known benign differences, and (3) root-cause correlation with interpreter source code.
This transforms raw divergence data into actionable bug reports.

4 Illustrative Example
Consider the following Python snippet: myfunc("test"). Table 1 illustrates the bisimulation trace
comparing CPython and GraalPy execution.

Table 1. Bisimulation trace comparing CPython and GraalPy instruction sequences. Minor naming differences
are normalized; structural equivalence is maintained.

Step CPython GraalPy

0 LOAD_CONST LOAD_CONSTANT
1 MAKE_FUNCTION MAKE_FUNCTION_
2 LOAD_CONST LOAD_CONSTANT
3 CALL CALL_VARARGS_METHOD_

The traces show semantically equivalent behavior despite different instruction naming con-
ventions. However, divergences can reveal real bugs. For example, we observed consistent stack
divergences at BINARY_OP/PY_NUMBER_ADD_ instructions where floating-point values differed (e.g.,
1.02 vs. 1.019). Tracing this to the GraalPy source revealed a fast-path optimization in the double-
handling code:
if (child1Value instanceof Double) {

double child1Value_ = (double) child1Value;
state_0 = state_0 | 0b100000000;
this.state_0_ = state_0;
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quicken(state_0, $bc, $bci);
return PyNumberAddFastPathsBase.doDD(

child0Value_, child1Value_);
}

This fast-path introduced subtle precision differences compared to CPython’s implementation.

5 Technical Challenges
5.1 Instruction Mapping
Different interpreters use different bytecode instruction sets. CPython’s LOAD_CONST corresponds to
GraalPy’s LOAD_CONSTANT. We maintain an instruction mapping table that normalizes semantically
equivalent operations, allowing meaningful comparison despite surface-level differences.

5.2 Resynchronization
A more challenging problem arises when instruction sequences differ structurally. Consider class
definition: CPython uses the sequence PUSH_NULL; LOAD_BUILD_CLASS; ...; PRECALL; CALL
while GraalPy uses BUILD_CLASS_; STORE_LOCAL; ...; CALL_VARARGS_METHOD_. The inter-
preters execute different numbers of instructions for the same semantic operation.

Table 2 shows an example of structural divergence during class construction.

Table 2. Structural divergence in class definition requiring resynchronization. The interpreters use different
instruction counts for equivalent semantics.

CPython GraalPy

0 PUSH_NULL 0 —
1 LOAD_BUILD_CLASS 1 BUILD_CLASS_
2 — 2 STORE_LOCAL
...

...
...

...
14 PRECALL 14 —
15 CALL 15 CALL_VARARGS_METHOD_

Our resynchronization strategies include: (1) instruction grouping based on semantic boundaries,
(2) synchronization at function call/return points, and (3) heuristic alignment based on stack state
similarity. This remains an active area of development.

6 Implementation Status
Our current implementation includes:
• A bisimulation driver for coordinating CPython and GraalPy execution
• A protocol implementation for interpreter instrumentation and control
• A test case generation system based on Python’s test suite and synthetic programs
• Divergence aggregation and filtering infrastructure
• Initial resynchronization strategies for common divergence patterns

7 Related Work
Our work builds on several research threads. Sangiorgi’s comprehensive treatment of bisimulation
and coinduction [2] provides the theoretical foundation. Desharnais and Brunthaler [1] explore
verified virtual machines for dynamic languages, representing the formal verification end of the
spectrum.
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Differential testing, as pioneered by McKeeman [3] and applied to compilers by Yang et al. [4],
shares our goal of finding semantic differences without formal specifications. Our approach differs
by operating at the interpreter instruction level rather than program output level, enabling finer-
grained analysis.

Fuzzing techniques from the security domain, particularly coverage-guided fuzzing [5], suggest
avenues for systematic test case generation. Combining bisimulation with fuzzing-inspired program
mutation is a promising direction for future work.

8 Conclusion and Future Work
We have presented a practical bisimulation approach for detecting semantic divergences between
interpreter implementations. By observing instruction execution, stack states, and function calls in
lockstep, we can identify differences that escape traditional testing. Our divergence aggregation
and analysis techniques help trace these differences to root causes in interpreter source code.

Future work includes:
• Root-cause analysis tooling: Automated correlation of divergence patterns with inter-
preter source code locations
• Fuzzer integration: Systematic test case mutation and automatic program generation,
guided by coverage metrics
• Broader interpreter support: Extending the protocol to PyPy (JIT), MicroPython (embed-
ded), and potentially other language ecosystems (Lua, WebAssembly, SQL interpreters)
• Debugging integration: Using bisimulation divergence data to assist developers in debug-
ging interpreter reimplementations
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T3 - Tree Transformation Tool
STEPHAN MITTE,Martin-Luther University Halle-Wittenberg, Germany

Das Werkzeug T3 - Tree Transformation Tool wurde für die Transformation von Abstrakten Syntaxbäumen ent-
wickelt. Im Gegensatz zu anderen Werkzeugen generiert T3 eine Attributierte Grammatik, mit der spezifizierte
Transformationen auf dem Baum angewendet werden. Zur einfachen Beschreibung dieser Transformationen
wird die neue Transformationssprache T2L - Tree Transformation Language genutzt. Diese enthält allgemei-
ne Sprachfeatures zur Berechnung der Baumtransformationen und kann zusätzlich auf die Attribute des
abstrakten Syntaxbaums zugreifen, wodurch komplexe Transformationen definiert werden können.

1 Einleitung
Abstrakte Syntaxbäume (AST) sind eine verbreitete Art der Repräsentation von Programmcode.
Diese werden insbesondere in Übersetzerbau-Werkzeugen eingesetzt, um verschiedene Analysen
und Operationen durchzuführen. Die von Knuth in [11] vorgestellten Attributierten Grammatiken
(AG) haben sich für die Spezifikation von Eigenschaften in den Bäumen etabliert. Diese repräsen-
tieren in kompakter Form die semantischen Informationen der AST-Knoten und werden auch für
Berechnungen auf den Bäumen genutzt. Im Übersetzerbau ist der AST eine Zwischendarstellung des
Programmcodes, welcher während der Übersetzung in andere Repräsentationen, wie zum Beispiel
einer Intermediate Language, umgewandelt wird. Diese Transformationen werden typischerweise
manuell implementiert, was fehleranfällig ist und bei größeren Bäumen sehr unübersichtlich werden
kann. Zudem muss der Entwickler selbst festlegen, welche Transformation auf welchen Teilbaum
angewendet werden soll, obwohl dieses Problem mithilfe von Pattern-Matching Algorithmen gelöst
werden kann.

Eine andere Möglichkeit ist die automatische Generierung der Transformationen aus einer
Spezifikation. In der Literatur gibt es bereits viele Beispiele für solche Transformationswerkzeuge.
Im Kontext des Übersetzerbaus existieren individuelle Lösungen für AST-Transformationen wie
zum Beispiel [7, 8, 15]. Andere Baumtransformationen wurden im Rahmen der modellgetriebenen
Softwareentwicklung entwickelt. Dabei wird der AST durch ein Meta-Modell beschrieben und
mithilfe von Modelltransformationen umgewandelt.

In vielen Übersetzerbau-Werkzeugen, wie zum Beispiel Eli [6], werden AG als formaler Rahmen
für die statische Semantik genutzt. Bei der Transformation des AST wurden diese aber bisher
gar nicht ([8]) oder nur mit Einschränkungen ([7, 15]) genutzt. In der modellbasierten Software-
entwicklung existieren Arbeiten für Modelltransformationen basierend auf AG ([3], [4]). Diese
erfordern aber mit den zugrundeliegenden Meta-Modellen eine zusätzliche Abstraktionsebene,
die für die Transformation von Abstrakten Syntaxbäumen nicht benötigt wird. Das Werkzeug T3
adressiert dieses Problem und bietet einen direkteren Weg. Dabei werden die Transformationen
durch generierte Attribute einer AG beschrieben und mithilfe der Berechnungsstrategie der AG
automatisch auf den AST angewendet. Für die einfachere Abbildung der Transformationen auf
Attribute und Regeln einer AG wurde die Spezifikationssprache T2L - Tree Transformation Language
entworfen.

2 Verwandte Arbeiten
Die Transformation von attributierten Abstrakten Syntaxbäumen wurde bereits in vielen Arbei-
ten untersucht. Für einige Übersetzerbau-Werkzeuge wurden spezielle Transformationssprachen
entwickelt, die in dem jeweiligen Werkzeug fest integriert sind. Eine Alternative dazu sind Mo-
delltransformationen in der modellgetriebenen Softwareentwicklung, die ein deutlich größeres

Author’s Contact Information: Stephan Mitte, Martin-Luther University Halle-Wittenberg, D-06120 Halle, Germany.
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Anwendungsfeld abdecken. Im Folgenden werden wichtige Arbeiten aus beiden Bereichen vorge-
stellt und diskutiert.

2.1 Spezifikationssprachen
Im Rahmen des Projekts PROSPECTRA [12] wurde die Spezifikationssprache OPTRAN [15] entwi-
ckelt, mit der statische Transformationen des AST beschrieben werden können. Transformationsre-
geln bestehen aus einem Baummuster, Kontextbedingungen über den Attributen des Baummusters
und Aktionen. Durch die Anwendung der Transformation müssen aber unter Umständen Attribute
und deren Abhängigkeiten neu berechnet werden. In [14] wird die automatische Neuberechnung
der Attribute in OPTRAN diskutiert, wobei diese im schlechtesten Fall nach jeder Transformation
neu berechnet werden müssen. Ein weiterer Nachteil ist, dass die Reihenfolge, in der die Regeln
angewendet werden, nur durch globale Strategien wie zum Beispiel: top-down, left-right festgelegt
werden kann. Durch den Einsatz einer AG bei der Transformation des AST wird automatisch eine
Berechnungsstrategie ermittelt, sodass Attribute nicht neu berechnet werden müssen. Durch zu-
sätzliche Abhängigkeiten zwischen den Attributen können auch andere Berechnungsreihenfolgen
erzwungen werden. Dies spricht für den Einsatz einer AG bei der Transformation.
Das Werkzeug Puma ist Bestandteil des Projekts A Tool Box for Compiler Construction [5] und

dient ebenfalls der Transformation und Manipulation des AST. In Puma werden Transformationen
in Subroutinen (Prozeduren, Funktionen) eingebettet. Jede Subroutine definiert eine Menge von
Transformationsregeln. Wenn ein Teilbaum auf das Baummuster einer Regel passt, werden die
entsprechenden Anweisungen der Regel ausgeführt. In Beispiel 2.1 wird die Subroutine ILCode
auf beliebige Bäume angewendet. Der Zwischencode wird durch die Funktion Emit aber nur für
binäre Ausdrücke und Konstanten erzeugt. Dadurch können in Puma komplexere Transformationen
beschrieben werden als in OPTRAN. Jedoch benötigt Puma ein spezielles Format des AST, welches
in [5] genutzt wird. Zudem werden die Transformationen in einem generierten Programm-Modul
implementiert, welches ebenfalls nur in [5] verwendet werden kann. Dadurch ist Puma sehr stark
an das Übersetzerbau-Werkzeug gebunden und eignet sich nicht für die Verwendung in anderen
Werkzeugen.

1 PROCEDURE ILCode ( t : TREE)
2 Binary ( Lop , Rop , { Plus } , TypeCode ) : −
3 ILCode ( Lop ) ; ILCode (Rop) ;
4 Coerce ( Lop : : Type , Rop : : Type ) ;
5 Emit (ADD, TypeCode ) ; .
6 In tConst ( Value := va l ) : − Emit ( IntType , va l ) ; .
7 RealConst ( Value := va l ) : − Emit ( RealType , va l ) ; .

Beispiel 2.1. Auszug aus einem Puma-Programm zur Zwischencode-Generierung

2.2 Modelltransformationen
In der modellgetriebenen Softwareentwicklung ist der AST ein Modell für den Programmcode.
Baumtransformationen werden in diesem Kontext als Modelltransformationen bezeichnet und
in vielen Arbeiten thematisiert. Für abstrakte Syntaxbäume wurde ein Meta-Modell im MOF-
Standard [17] unter dem Namen Abstract Syntax Tree Metamodeling (ASTM) [16] veröffentlicht,
um neben Transformationen auch Programmanalysen über verschiedene Programmiersprachen
hinweg zu erleichtern. Dazu wird der Programmcode zunächst in einen sprachspezifischen AST
(SAST) umgewandelt, welcher durch ein SAST Meta-Modell beschrieben wird. Anschließend wird
der SAST auf einen Generic AST (GAST) abgebildet, welcher seinerseits durch ein GAST Meta-
Modell beschrieben wird. Ein weiteres Meta-Modell wird für den Target-Code benötigt, um auch
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Fig. 1. Modelltransformation eines Abstrakten Syntaxbaums mit dem Abstract Syntax Tree Metamodeling

dessen Struktur zu definieren. Nachdem die verschiedenen Meta-Modelle beschrieben und die
entsprechenden Modelle daraus abgeleitet wurden, kann die Transformation des GAST in den
Target-Code mit etablierten Modelltransformationssprachen definiert werden. Der gesamte Ablauf
dieser Transformation ist in Abbildung 1 skizziert.

Andere Modelltransformationssprachen wie zum Beispiel ATL [10], GReAT [1] oder auch YAMTL
[2] funktionieren in ähnlicher Weise. Zunächst wird das Meta-Modell für den AST und den Target-
Code beschrieben. Dann muss der AST entsprechend des Meta-Modells aufgebaut werden, bevor
die Transformationen zwischen den Modellen definiert werden können.

In [3, 4] werden Modelltransformationen mithilfe von Attributierten Grammatiken beschrieben.
Dazu werden die Meta-Modelle zunächst in eine AG überführt. Die Korrektheit dieser Abbildung
wird ausführlich in [3] gezeigt. Anschließend werden die Transformationen mithilfe einer weiteren
AG beschrieben. Während beide Arbeiten die automatische Berechnung der Attribute durch die AG
hervorheben, werden keine Informationen zur Transformationsreihenfolge und Auswahl der Regeln
angegeben. In den Beispielen in [3] wird stets eine top-down Traversierung genutzt. Allerdings
geht aus der Arbeit keine globale Strategie hervor.

2.3 Zusammenfassung
Die vorgestellten Spezifikationssprachen bieten auf unterschiedliche Art und Weise Möglich-
keiten zur Transformation des AST an. Die Spezifikationssprache OPTRAN [15] erfordert aber
unter Umständen die Neuberechnung von Attributen und deren Abhängigkeiten. Zudem wird
ein systemspezifisches Modul generiert, welches nur im Kontext des Übersetzerbau-Werkzeugs
verwendet werden kann, was die Integrierbarkeit stark einschränkt. Mit Puma [7] können komple-
xere Transformationen beschrieben werden. Jedoch wird eine spezielle Repräsentation des AST
benötigt, welche nur im Kontext von [5] genutzt wird, was ebenfalls die Integrierbarkeit in andere
Übersetzerbau-Werkzeuge erschwert.
Modelltransformationen erfordern ein eigenes Meta-Modell für den AST und ein weiteres für

den Target-Code. Standards, wie MOF [17], werden im Übersetzerbau nur selten berücksichtigt.
Stattdessenwerden viele Aufgaben durchmanuelle Implementierungen bearbeitet oder Generatoren
aus einer Spezifikation erzeugt und genutzt, wie im Beispiel von Lex [13] und Yacc [9] bei der
lexikalischen und syntaktischen Analyse. Zudem wird mit den Meta-Modellen eine zusätzliche
Abstraktion eingeführt, die für die Transformation des AST an sich nicht benötigt wird, da dieser
in Kombination mit einer AG bereits alle wichtigen Informationen über den Programmcode enthält.
Auch wenn dieser nicht durch ein standardisiertes Meta-Modell beschrieben wird, so ist er ein weit
verbreitetes Modell im Übersetzerbau.

Andererseits wird bereits in [3, 4] beschrieben, wie Modelltransformationen auch mit AG durch-
geführt werden können, indem das Meta-Modell auf eine AG abgebildet wird. Dies zeigt die
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Möglichkeiten von Attributierte Grammatiken bei der Transformation von Abstrakten Syntaxbäu-
men.

3 Methodik
Die Werkzeuge Puma [7] und OPTRAN [15] sind aufgrund der verschiedenen Repräsentationen
des AST und systemspezifischen Modulen stark mit dem jeweiligen Übersetzerbau-Werkzeug
gekoppelt. Dies hat negative Auswirkungen auf die Integrierbarkeit. Andererseits verwenden viele
Übersetzerbau-Werkzeuge bereits eine Attributierte Grammatik, um auf die Attribute des AST
zuzugreifen und die Semantik zu beschreiben. Eine AG kann um neue Attribute erweitert werden,
ohne die anderen Attribute neu berechnen zu müssen oder bestehende Abhängigkeiten zu verletzen.
Aufgrund dieser Vorteile werden die Transformationen von T3 auf Attribute und Regeln einer AG
abgebildet, welche in dem entsprechenden Übersetzerbau-Werkzeug bereits verwendet wird.

3.1 Muster und Baumtransformationen
Bei der Transformation des AST in Zwischencode werden die Baumtransformationen anhand eines
Musters der abstrakten Syntax und der Attribute, die in diesem Muster vorkommen, ausgewählt.
Ein Muster wird durch Definition 1 beschrieben.

Definition 1. Sei 𝐺 ≜ (𝑇, 𝑁, 𝑃, 𝑍 ) eine kontextfreie Grammatik zur Definition einer abstrakten
Syntax. EinMuster über 𝐺 ist induktiv wie folgt definiert:

i. Jedes 𝐴 ∈ 𝑁 ist ein Muster vom Typ 𝐴
ii. Falls𝐴 ::= 𝐴1 . . . 𝐴𝑛 und𝑚1, . . . ,𝑚𝑛 Muster vom Typ𝐴1, . . . , 𝐴𝑛 sind, dann ist𝐴(𝑚1, . . . ,𝑚𝑛)

Muster vom Typ 𝐴.

Damit eine Baumtransformation angewendet wird, muss das Muster auf einen Teilbaum des
AST passen. Diese Relation ist in Definition 2 erläutert.

Definition 2. Sei 𝑡 ein Unterbaum eines abstrakten Syntaxbaums zu 𝐺 mit einer Wurzel vom Typ
𝐴. Der Unterbaum 𝑡 passt auf ein Muster𝑚 genau dann, wenn:

i. 𝑚 = 𝐴 oder
ii. 𝑚 = 𝐴(𝑚1, . . . ,𝑚𝑛) und die Unterbäume 𝑡1, . . . , 𝑡𝑛 passen auf die Muster𝑚1, . . . ,𝑚𝑛 .

Wenn das Muster einer Transformationsregel auf einen Teilbaum passt, werden die Bedingungen
innerhalb der Regel ausgewertet und die Aktionen des ersten erfüllten Wächters ausgeführt. Diese
Aktionen können entweder Zwischencode generieren, oder weitere Regeln aufrufen. Definition 3
vereint all diese Eigenschaften einer Baumtransformation.

Definition 3. Sei 𝐴𝐺 ≜ (𝐺,𝐴, 𝑅, 𝐵) eine attributierte Grammatik. Eine Baumtransformation ist
eine Funktionsdefinition

𝒯 J𝑚K𝑎1 . . . 𝑎𝑛 = Aktionen1 if Bedg1
= Aktionen2 if Bedg2
. . .

= Aktionen𝑘 if Bedg𝑘
wobei

• 𝒯 der Name der Transformation,
• 𝑚 ein Muster über der kontextfreien Grammatik 𝐺 ,
• 𝑎1 . . . 𝑎𝑛 die beteiligten Attribute,
• Aktionen𝑖 eine Folge von Aktionen und
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• Bedg𝑖 boolesche Terme über den im Muster beteiligten Attributen ist.

Beispielsweise würde die Baumtransformation ℬ in Abbildung 2 auf alle Teilbäume angewendet
werden, welche eine binäre Addition beschreiben. Je nachdem, ob das Attribut type den Wert
integer oder float hat, werden zunächst die Transformationen von Expr1 und Expr2 durchgeführt
und anschließend der Zwischencodebefehl für Integer-Addition bzw. Float-Addition generiert.

ℬJ𝐵𝑖𝑛𝑂𝑝 (𝐸𝑥𝑝𝑟1,𝑂𝑝 (+), 𝐸𝑥𝑝𝑟2)K 𝑡𝑦𝑝𝑒, 𝑣𝑎𝑙

=ℬJ𝐸𝑥𝑝𝑟1K if Op.type = integer

ℬJ𝐸𝑥𝑝𝑟2K
𝐵𝑖𝑛𝑂𝑝.𝑣𝑎𝑙 = IntADD(Expr1.val, Expr1.val)

=ℬJ𝐸𝑥𝑝𝑟1K if Op.type = float

ℬJ𝐸𝑥𝑝𝑟2K
𝐵𝑖𝑛𝑂𝑝.𝑣𝑎𝑙 = FltADD(Expr1.val, Expr1.val)

Fig. 2. Baumtransformation einer binären Addition

3.2 Abbildung von Baumtransformationen
Aus Definition 1 folgt, dass ein Muster über G sowohl ein einzelnes Nichtterminal 𝐴 ∈ 𝑁 , als auch
ein Term 𝐴 ::= 𝐴1 . . . 𝐴𝑛 sein kann. Terme können direkt auf die Produktionen der AG abgebildet
werden. Dagegen müssen einzelne Nichtterminale zunächst den entsprechenden Produktionen
zugeordnet werden. Sei 𝒯 J𝐴K eine Transformation mit dem Muster𝑚 = 𝐴. Dann muss 𝒯 auf alle
Produktionen 𝑝 ∈ 𝑃 abgebildet werden, für die𝐴 auf der rechten Seite vorkommt: 𝑝 : 𝑋 ::= . . . 𝐴 . . . .
Abgesehen von dem Wurzelkonten können so alle Vorkommen eines Nichtterminals abgebildet
werden.

Bei der Transformation des AST in Zwischencode müssen die Aktionen einer Baumtransformati-
on den Wert eines Attributs berechnen, welches den Zwischencode repräsentiert. Dafür wird in
der AG ein neues Attribut definiert, welches die Berechnungsreihenfolge der anderen Attribute
nicht verändern darf, damit keine zyklischen Abhängigkeiten entstehen. Gleichzeitig dürfen auch
bestehende Abhängigkeiten nicht verletzt werden. Damit dies gelingt, wird in dem Werkzeug T3
nur lesend auf die anderen Attribute des AST zugegriffen.
Die booleschen Terme einer Baumersetzungsregel müssen in einer Fallunterscheidung aus-

gewertet werden. Diese muss bei der Berechnung der Attribute in der AG ebenfalls abgebildet
werden. Wenn die Sprachdefinition der AG kein passendes Sprachkonzept bereitstellt, kann diese
Fallunterscheidung alternativ über externe Funktionen realisiert werden.
Die Reihenfolge, in der die Baumtransformationen ausgewertet werden, kann über die Berech-

nungsreihenfolge der AG und zusätzlich eingeführte Attributierungsregeln beeinflusst werden.
Diese Regeln erzwingen aufgrund von Abhängigkeiten zwischen den Attributen eine bestimmte
Auswertereihenfolge, dürfen aber bestehende Abhängigkeiten nicht verletzen.

3.3 Spezifikation von Baumtransformationen
Die Beschreibung eines Musters einer Baumtransformation muss alle Informationen enthalten,
um bei der Abbildung die Aktionen den richtigen Produktionen zuzuordnen. Neben den bereits
betrachteten Mustern aus Definition 1 können in anderen Werkzeugen, wie zum Beispiel Puma
[7], auch Variablen und Don’t Care Symbole zur Beschreibung von komplexen Mustern genutzt
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werden. Bei der Abbildung auf die AG müssen die Variablen und Don’t Care Symbole dann wie-
der durch die entsprechenden Terme und Nichtterminale ersetzt werden. Eine Möglichkeit, um
diese Informationen kompakt darzustellen, bieten Funktionssignaturen und Typ-Konstruktoren
aus funktionalen Programmiersprachen. Dabei wird das Muster einer Baumtransformation als
Funktionssignatur verstanden. Damit können Terme beschrieben werden, welche direkt auf eine
Produktion abgebildet werden. Einzelne Nichtterminale, sowie Muster mit Variablen und Don’t Care
Symbole werden dagegen durch Typ-Muster beschrieben, welche analog zu Typ-Konstruktoren zu
verstehen sind.

Für die Auswahl der auszuführenden Aktionen innerhalb einer Baumtransformation muss eine
Syntax definiert werden, mit der sowohl die booleschen Terme, als auch die zugehörigen Aktionen
spezifiziert werden können. Dieses Sprachkonstrukt hat im Kontext von Baumtransformationen
Ähnlichkeit mit Wächtern in funktionalen Sprachen.

Eine andere Schwierigkeit betrifft die Grundblöcke im Zwischencode, welche bei der Transfor-
mation des AST definiert werden müssen. Alle Befehle im Zwischencode sind einem Grundblock
zugeordnet. Diese Zuordnung muss zunächst aus dem AST ermittelt werden. Weiterhin endet
jeder Grundblock mit einem Sprungbefehl, dessen Sprungziel ebenfalls berechnet werden muss.
Zwischencodebefehle können durch spezielle Sprachkonstrukte Grundblöcken explizit zugeordnet
werden. Andernfalls muss die Zuordnung aus dem Kontext ermittelt werden.

Um diese Schwierigkeiten zu überwinden und die Abbildung zu erleichtern, wurde die Baum-
transformationssprache T2L entwickelt, welche die Beschreibung von Baumtransformationen als
funktionales Programm ermöglicht. Die einzelnen Transformationen werden dabei durch Funk-
tionen dargestellt. Die Muster der Transformationen werden durch Funktionssignaturen und
Typ-Konstruktoren definiert. Mithilfe spezieller Sprachkonstrukte können Grundblockgraphen
konstruiert und Fallunterscheidungen ausgewertet werden. Das Werkzeug T3 generiert dann auto-
matisch aus dieser Spezifikation eine AG, mit der die beschriebenen Transformationen berechnet
werden.

4 Fallstudie zur Generierung von Zwischencode
In diesem Abschnitt wird gezeigt, wie das Werkzeug T3 für die Generierung von Zwischencode
innerhalb des Übersetzerbauwerkzeugs Eli [6] eingesetzt werden kann. Die Zwischencodebefehle
sollen als Folge von Tupeln dargestellt werden und das Attribut symReg für die Tupelnummern. Die
Baumtransformation in Beispiel 4.1 transformiert den Teilbaum einer bedingten Fallunterscheidung,
wobei auch der Grundblockgraph verändert wird. Im Folgenden werden wichtige Auszüge der
T2L-Spezifikation dieser Transformation beschrieben.

4.1 Spezifikation der Transformationen
Export. Der Zwischencode soll in dem Attribut il berechnet werden. In dem Übersetzerbauwerk-

zeug Eli [6] können Zwischencodebefehle als strukturierter Text mithilfe eines Pattern-Based-Text-
Generator erzeugt werden. Dieser strukturierte Text wird als Attribut vom Typ PTGNode dargestellt
und mit dem Wert PTGNULL initialisiert. Die Transformationen, welche dieses Attribut berechnen,
haben den Namen T und werden in Listing 1 definiert.

1 EXPORT
2 i l : : PTGNode( "PTGNULL" ) as T

Listing 1. Spezifikation des Attributs und Transformationsname für den Zwischencode

Data. Während Terme als Muster einer Transformation direkt auf eine Produktion abgebildet
werden können, müssen einzelne Nicht-Terminale durch ein Typ-Muster, wie in Listing 2 dargestellt,
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𝒯 J𝐸𝑥𝑝𝑟 (𝐸𝑥𝑝𝑟, 𝑆𝑡𝑎𝑡𝑠, 𝑆𝑡𝑎𝑡𝑠)K 𝑠𝑦𝑚𝑅𝑒𝑔, 𝑝𝑟𝑖𝑇𝑦𝑝𝑒

= 𝒯 J𝐸𝑥𝑝𝑟2K 𝐶𝑜𝑛𝑑𝐼𝐿(𝐸𝑥𝑝𝑟2.𝑠𝑦𝑚𝑅𝑒𝑔,𝑏1, 𝑏2)
b1:
𝒯 J𝑆𝑡𝑎𝑡𝑠1K 𝐽𝑢𝑚𝑝𝐼𝐿(𝑏3)

b2:
𝒯 J𝑆𝑡𝑎𝑡𝑠2K 𝐽𝑢𝑚𝑝𝐼𝐿(𝑏3)

b3:
𝐼𝑛𝑡𝑃ℎ𝑖𝐼𝐿(𝑆𝑡𝑎𝑡𝑠1, 𝑆𝑡𝑎𝑡𝑠2) if Expr1.priType = integer

Beispiel 4.1. Baumtransformation einer bedingten Fallunterscheidung

spezifiziert werden. Das Typ-Muster Expression soll auf alle Nichtterminale Expr angewendet
werden, um Zwischencodebefehle für eine mögliche Typanpassung zu generieren.

1 DATA
2 data Expression = Expr

Listing 2. Spezifikation der Typ-Muster

Transformationen. Die Spezifikation der Transformationsregel ist in Listing 3 dargestellt. In Zeile
3 wird zunächst Expr[2] durch den Aufruf einer anderen Transformation bearbeitet. In Zeile 5
wird dann der aktuelle Grundblock beendet und anschließend ein neuer, mit dem symbolischen
Label b1, begonnen. Dabei handelt es sich um vordefinierte Aktionen, welche den Aufbau des
Grundblockgraphen und die Berechnung der konkreten Labels durchführen. Das Schlüsselwort CASE
in Zeile 15 generiert die Fallunterscheidung für die beschriebenen Wächter und deren Aktionen.

1 RULE i f E x p r
2 TRANSFORM T : Expr ( Expr , Stats , S ta ts ) COMPUTE
3 Eval . T ( Expr [ 2 ] )
4 PTGCondIL ( Expr [ 2 ] . symReg + 1 , Expr [ 2 ] . symReg , b1 , b2 )
5 ENDBB
6 BEGINBB b1 :
7 Eval . T ( Sta ts [ 1 ] )
8 PTGJumpIL ( Sta ts [ 1 ] . symReg + 1 , b3 )
9 ENDBB
10 BEGINBB b2 :
11 Eval . T ( Sta ts [ 2 ] )
12 PTGJumpIL ( Sta ts [ 2 ] . symReg + 1 , b3 )
13 ENDBB
14 BEGINBB b3 :
15 CASE
16 | Expr [ 1 ] . pr iType == Oi lTypein tType
17 = PTGIntPhiIL ( Expr [ 1 ] . symReg , Sta ts [ 1 ] . symReg , Sta ts [ 2 ] . symReg)
18 / * . . . * /
19 otherwise = PTGError ( )
20 END
21 END

Listing 3. Transformation von bedingten Fallunterscheidungen

Das Werkzeug T3 generierte aus dieser Spezifikation die in Listing 4 dargestellte Produktion. In
Zeile 3 wird zunächst die Transformation von Expr[2] berechnet. In den Zeilen 5, 9, 13 werden die
vordefinierten Aktionen zum Beenden eines Grundblocks durchgeführt und in den darauffolgenden
Zeilen ein neuer Grundblock mit dem entsprechenden Label begonnen. Die einzelnen Grundblöcke
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werden auf einem Stack verwaltet und nachdem der letzte Grundblock geschlossen wurde zu einem
Grundblockgraphen vereinigt.

1 RULE i f E x p r : Expr : : = Expr Sta ts Sta ts
2 COMPUTE
3 Expr [ 2 ] . i l I n = Expr [ 1 ] . i l I n ;
4 % End cu r ren t BB and Begin new BB
5 BBPushStack ( i lCodeGenifExpr_i lEndBB_0 ( Expr [ 2 ] . i lOu t , Expr [ 2 ] . p r i , Expr [ 2 ] . post , . . . ) ) ;
6 Sta ts [ 1 ] . i l I n = BeginBB ( ) ;
7 Sta ts [ 1 ] . _T3lab = ADD( Expr [ 2 ] . _T3lab , 1 ) ;
8 % End cu r ren t BB and Begin new BB
9 BBPushStack ( i lCodeGenifExpr_i lEndBB_1 ( Sta ts [ 1 ] . i lOu t , S ta ts [ 1 ] . symReg , . . . ) ) ;
10 Sta ts [ 2 ] . i l I n = BeginBB ( ) ;
11 Sta ts [ 2 ] . _T3lab = ADD( S ta ts [ 1 ] . _T3lab , 1) ;
12 % End cu r ren t BB and Begin new BB
13 BBPushStack ( i lCodeGenifExpr_i lEndBB_2 ( Sta ts [ 2 ] . i lOu t , S ta ts [ 2 ] . symReg , . . . ) ) ;
14 Expr [ 1 ] . i l O u t = i lCodeGen i fExp r_ i l ( BeginBB ( ) , Expr [ 1 ] . p r i , S ta ts [ 1 ] . symReg , . . . ) ;
15 Expr [ 1 ] . _T3lab = ADD( S ta ts [ 2 ] . _T3lab , 1) ;
16 END;

Listing 4. Generierte AG der bedingten Fallunterscheidung

Die anderen Aktionen werden in den jeweiligen ilCodeGen-Funktionen implementiert, wel-
che als externe C-Funktionen eingebunden werden. Die Aktionen des ersten Grundblocks sind in
Listing 5 dargestellt. Die externen PTG-Funktionen berechnen in der Variable code einen konkreten
PTGNode-Wert. Die Fallunterscheidung in den Zeilen 3-7 implementiert das Typ-Muster Expression
für Expr[2].

1 extern PTGNode i lCodeGenifExpr_i lEndBB_0 ( . . . )
2 {
3 i f ( Express ion_pr i==Oi lTypein tType && Expression_post== Oi lType f l tType ) {
4 code = PTGSeq( code , PTGIntToFlt ( Expression_symReg , Expression_symReg − 1) ) ;
5 } else {
6 code = PTGSeq( code , PTGSkip ( ) ) ;
7 }
8 code = PTGSeq( code , PTGCondIL ( Expr_2_symReg + 1 , Expr_2_symReg , b1 , b2 ) ) ;
9 return code ;
10 }

Listing 5. Generierte Hilfsfunktion für die bedingte Fallunterscheidung

Das Typ-Muster Expression wird durch die in Listing 6 dargestellte SYMBOL Transformation spezi-
fiziert. Diese generiert Attribute und Regeln für Zwischencodebefehle, welche die automatischen
Typanpassung von int zu float berechnen und in alle Transformationen eingesetzt werden, in
denen das Nichtterminal Expr durch eine T Transformation ausgewertet wird. Dies ist in Listing 3
für Expr[2] der Fall.

1 SYMBOL
2 TRANSFORM T : Expression COMPUTE
3 Eval . T ( Expression )
4 CASE
5 | Expression . pr iType == Oi lTypein tType && Expression . postType == Oi lType f l tType
6 = PTGIntToFlt ( Expression . symReg)
7 otherwise = PTGSkip ( )
8 END
9 END

Listing 6. Transformation des Typ-Musters Expression

Auf ähnlicheWeise könnenmithilfe desWerkzeugs T3 alle benötigtenAttribute und Produktionen
einer AG für die gesamte Berechnung von Zwischencode generiert werden.

5 Fazit
Die Transformation des Abstrakten Syntaxbaums wurde in der Vergangenheit durch fehleranfällige
manuelle Implementierungen gelöst. Daher wurden Spezifikationssprachen entwickelt, welche aber
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schlecht in andere Übersetzerbau-Werkzeuge zu integrieren sind. Auch Modelltransformationen
haben das Problem nicht gelöst, sondern nur eine zusätzliche Abstraktionsebene hinzugefügt. Das
Werkzeug T3 bildet die Transformationen auf eine Attributierte Grammatik ab, welche in vielen
Übersetzerbau-Werkzeugen bereits Verwendung findet. Dabei können die neu generierten Attribute
zur Beschreibung der Transformationen genutzt werden, ohne die anderen Attribute des AST
neu berechnen zu müssen. Aufgrund der Abhängigkeiten zwischen den Attributen, welche die
Transformationen berechnen, erfolgt die Auswertereihenfolge stets bottom-up. Jedoch kann die
Reihenfolge zwischen Knoten mit gleichem Eltern-Knoten beliebig definiert werden. Zudem können
Transformationen in T2L auch kombiniert werden. Obwohl das Werkzeug T3 für den Einsatz in dem
Übersetzerbau-Werkzeug Eli [6] entwickelt wurde, können die beschriebenen Transformationen
auch in anderen Übersetzerbau-Werkzeugen genutzt werden. Als Voraussetzung muss eine AG in
dem Werkzeug verwendet werden, sodass die generierten Attribute und deren Abhängigkeiten in
diese AG integriert werden können.

Neben der Integrierbarkeit hat dieser Ansatz auch den Vorteil, dass die Korrektheit der Transfor-
mationen gezeigt werden kann. Dieser Nachweis und weitere Analysen sollen in weiterführenden
Arbeiten erbracht werden, um die korrekte Funktionsweise des Werkzeugs festzustellen. Aktuell
können nur Transformationen mit flachen Mustern und Wächtern (Eltern → Kindknoten) be-
schrieben werden. Aber bereits für den Aufbau von Zwischencodebäumen oder optimierenden
Transformationen müssen auch verschachtelte Muster und Wächter beschrieben werden können.
Dies erfordert komplexere Typ-Muster.
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Ein Language-Server für Java-TX
RUBEN KRAFT, Baden-Wuerttemberg Cooperative State University, Germany
MARTIN PLÜMICKE, Baden-Wuerttemberg Cooperative State University, Germany

Um den Herausforderungen der zunehmenden Komplexität moderner Entwicklungsumgebungen
gerecht zu werden, sind leistungsstarke Tools notwendig, die Entwicklerinnen und Entwickler bei
der Nutzung von Sprachen mit Typinferenz unterstützen. Die Konzeption und der Aufbau eines
Language Servers für Java-TX, einer auf Java basierenden, zwar statisch getypten aber ohne jede
Typannotation auskommende Sprache, werden in dieser Arbeit behandelt. Der Server verwendet
das Language Server Protocol (LSP), um gängige Integrated Development Environment (IDE)s wie
Visual Studio Code und IntelliJ IDEA mit Funktionen wie Syntaxhervorhebung, Fehlerdiagnosen,
Typinferenz, Quick-Fixes und Inlay-Hints zu versorgen. Die Architektur ist modular aufgebaut
und nutzt LSP4J. Diese Integration ermöglicht es Entwickelnden, typlose Programme effizienter
zu erstellen und zu debuggen. Am Ende werden die Herausforderungen, Designentscheidungen
und mögliche Erweiterungen, wie Performanceverbesserungen und zusätzliche Editor-Features,
besprochen.

1 Einleitung
1.1 Motivation
Java-TX ist eine statisch getypten Sprache, die es erlaubt, im Quellcode auf explizite
Typangaben verzichtet. Der Compiler ermittelt die Typen während der Kompilierung au-
tomatisch. Das reduziert den syntaktischen Overhead.
Ein Problem dieser Herangehensweise ist, dass eingefügten Typen für den Entwickler während
des Programmierens nicht direkt ersichtlich sind. Es ist daher notwendig, dem Entwickler
die Typen, die der Compiler berechnet hat, zurückzugeben, um die Nachvollziehbarkeit zu
verbessern. Wenn es mehrere gültige Typen gibt, ist es sinnvoll, eine Auswahlmöglichkeit zu
schaffen, damit der Entwickler den passenden Typ bewusst auswählen kann.
Java-TX ist, im Gegensatz zu etablierten Sprachen wie Java, noch nicht in moderne En-
twicklungsumgebungen integriert. In Java-TX jedoch müssen Entwickler oft manuell mit der
Kommandozeile arbeiten und verzichten somit auf wichtige Entwicklungsunterstützung.
Ein Language Server soll diese Lücke schließen und Java-TX in moderne IDEs integrierbar
machen. Dieser Server bietet Funktionen wie Syntaxhervorhebung, Typinferenzanzeige,
Typauswahl und Fehlerdiagnosen. Die Absicht ist es, Java-TX in Bezug auf die Entwickler-
freundlichkeit auf das Niveau aktueller Programmiersprachen zu bringen, ohne die Vorzüge
der typlosen Programmierung zu verlieren.

1.2 Zielsetzung
Die Funktionen, die in der Motivation vorgestellt wurden, sollen innerhalb eines zeitgemäßen,
wiederverwendbaren Moduls umgesetzt werden. Hierbei wird besonders darauf geachtet, wie
die Typinformationen, die der Compiler ermittelt, dargestellt werden, weil diese ein zentrales
Merkmal und eine große Herausforderung von Java-TX sind.
Das Ziel ist es diese Erweiterung auf Basis des LSP zu bauen, um eine standardisierte und
editorunabhängige Integration zu schaffen. Mit LSP ist es möglich, die entwickelte Lösung
in verschiedenen Entwicklungsumgebungen zu nutzen.
Außerdem ist es wichtig, dass die Umsetzung eine geringe Latenz aufweist, wenn es um die
Authors’ Contact Information: Ruben Kraft, Baden-Wuerttemberg Cooperative State University, Horb, Ger-
many, rkraft@hb.dhbw-stuttgart.de; Martin Plümicke, Baden-Wuerttemberg Cooperative State University,
Horb, Germany, pl@dhbw.de.
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Bereitstellung von Typinformationen und anderen sprachspezifischen Funktionen geht. Es
ist wichtig, dass Entwicklerinnen und Entwickler in Echtzeit Feedback bekommen, ohne dass
ihre Arbeitsgeschwindigkeit dadurch beeinträchtigt wird.

2 Grundlagen
2.1 JavaTX - Eine typlose aber statisch getypte Sprache auf Basis von Java
Java-TX ist eine aus Java hervorgegangene Programmiersprache [4]. Sie ermöglicht es,
Quellcode ohne typisierte Methoden oder Parameter zu schreiben. Während der Kompilierung
ermittelt der zugrunde liegende Typinferenz- bzw. Typunifikationssalgorithmus die fehlenden
Typen und setzt diese ein.
Java-TX vereint daher die Vorzüge von typlosen Sprachen, wie die hohe Ausdrucksstärke
und Reduktion, mit der Sicherheit und Robustheit, die eine statische Typisierung bietet.
Außerdem weist Java-TX eine leicht angepasste Syntax im Vergleich zu klassischem Java
auf, um typbedingte Konstrukte zu vermeiden oder zu vereinfachen. Alles in allem soll die
Sprache den Entwicklungsprozess vereinfachen und beschleunigen, während sie dennoch die
Vorteile der Typüberprüfung und einer sicheren Kompilierung nutzt.

2.2 Herausforderungen typloser Sprachen
Typlosen Programmiersprachen besitzen im Vergleich zu statisch typisierten Sprachen
Vorteile. Hierzu gehören gesteigerte Flexibilität und verkürzte Entwicklungszyklen, da auf
explizite Angaben von Typen im Quellcode verzichten wird.
Es ergibt sich eine Reduzierung der Entwicklungszeit, weil typbezogene Überlegungen
wegfallen und die Programmlogik in den Vordergrund tritt.
Ein zentrales Problem typloser Sprachen zeigt sich jedoch in der mangelnden Transparenz
während der Entwicklungszeit: Während der Entwicklungszeit, wissen Entwicklerinnen und
Entwickler oft nicht, welche Typen der Compiler letztlich inferieren wird. Das macht es
schwierig, das Programm zu analysieren und zu verstehen. Es wird besonders kritisch, wenn
es mehrere gültige Typen gibt und der Entwickler bewusst auswählen muss.
Ein bedeutendes Ziel von typlosen, aber typsicherer Sprachen wie Java-TX sollte es daher
sein, dass sie den Entwicklern geeignete Werkzeuge bieten, um inferierte Typen sichtbar zu
machen. So kann man die Vorzüge von dynamischer und statischer Typisierung vereinen.

2.3 Das Language Server Protocol (LSP)

Fig. 1. Übersicht über Zweikomponenten-Architektur.
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Plugins oder Extensions werden erstellt, um IDEs um neue Funktionen zu erweitern. In der
Vergangenheit war es notwendig, für jede IDE eine eigene Erweiterung zu erstellen, weil
sich die internen Architekturen und die Erweiterungsschnittstellen teils erheblich unterschei-
den. Die Microsoft Corporation hat das LSP eingeführt, um die Wiederverwendbarkeit zu
verbessern [3]. Es schafft eine weitere Abstraktionsebene zwischen der IDE (Client) und der
sprachspezifischen Logik (Server). So kann ein Language Server für mehrere Clients und
somit IDEs genutzt werden, ohne dass die Logik des Servers mehrfach entwickelt werden
muss. Nur der Client muss an die Umgebung angepasst werden. Das Protokoll sieht vor,
dass die Logik von der Anzeige getrennt wird. Dabei entstehen zwei Komponenten. Diese
sind in Abbildung 1 dargestellt.

(1) Der Language-Server: Der Langauge Server enthält alle Logik und kommuniziert mit
dem Client durch das LSP definierte Nachrichten.

(2) Der Client: Der Client enthält lediglich die konkrete Anzeigelogik für die IDE. Dabei
besitzt jede IDE einen eigenen Client.

Generische LSP-Client-Implementierungen oder Frameworks ermöglichen eine schnelle Erstel-
lung eines Clients. Die Kommunikation läuft dabei über LSP. Das erlaubt eine einheitliche
und wiederverwendbare Interaktion, unabhängig von der spezifischen Entwicklungsumge-
bung.

2.3.1 Funktionsweise von LSP. Um ein Verständnis über das LSP zu bekommen, erfordert
es zunächst, die Funktionen zu betrachten, die das Protokoll bietet. Das LSP legt eine
standardisierte Schnittstelle fest, die es einem Editor (Client) und einem sprachspezifischen
Server (Language Server) ermöglicht, miteinander zu kommunizieren. Das Ziel ist es, den En-
twicklern Informationen ihres Programmcodes zu liefern, beispielsweise Fehler oder inferierte
Typen.

Anschließend werden die wichtigsten LSP Funktionen erläutert.
(1) Inlayhints: Inlay Hints sind Hinweise, die im Quellcode angezeigt werden. Diese

zeigen Informationen, wie etwa inferierte Typen an. Im Falle von Java-TX sind sie
wichtig, um Entwicklern die durch den Compiler ermittelten Typen darzustellen,
ohne dass der Quellcode verändert wird. Deswegen sind sie oft unter dem Namen
Type Hints bekannt.

Fig. 2. Beispielhaftes Inlayhint

(2) Diagnostics: Eines der wichtigsten Merkmale des LSP sind die Diagnostics. Die meist
durch Unterstreichung dargestellten Diagnostiken machen auf Fehler, Informatio-
nen oder zusätzlichen Hinweisen aufmerksam. Dabei werden verschieden Farben
verwendet.
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Fig. 3. Beispielhaftes Diagnostic

(3) Text-Edits: Text-Edits werden verwendet, um auf mögliche Anpassungen am Quell-
code hinzuweisen. Sie beinhalten unter anderem Quick Fixes, die fehlende Imports
ergänzen, Typen hinzufügen oder andere Verbesserungen vorschlagen. Werden die
TextEdits eingefügt, so verändert sich der Programmcode.

Fig. 4. Beispielhafter Quick-Fix

(4) Hovers: Wenn man mittels des Mauszeiger über bestimmte Codepositionen fährt,
erscheinen zusätzliche Informationen. Diese sind beispielsweise die Typdefinition einer
Variablen oder eine Dokumentation. Diese Informationen verbessern das Verständnis
des Codes, ohne dass er explizit nachgeschlagen werden muss.

Fig. 5. Beispielhafter Hover-Effekt

Über das standardisierte JSON-RPC-Protokoll (Version 2.0) erfolgt die Kommunikation
zwischen Client und Server, wobei alle Nachrichten als strukturierte JSON-Objekte gesendet
werden. Nachrichten enthalten typischerweise diese Felder:
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(1) jsonrpc: Zeigt die JSON-RPC-Version an, die verwendet wird. Bei LSP ist "2.0" der
Standard.

(2) id: Eine eindeutige Kennung, um Anfragen und Antworten miteinander zu verbinden.
(3) method: Der Name der Methode, die ausgeführt werden soll, wie z. B. textDocumen-

t/hover.
(4) params: Ein Objekt, welches die Parameter für die Methode beinhaltet. Je nach

Kontext variieren sie und sind oft der umfangreichste Teil der Nachricht.

1 Content -Length: ...\r\n
2 \r\n
3 {
4 "jsonrpc": "2.0",
5 "id": 1,
6 "method": "textDocument/completion",
7 "params": {
8 ... // Parameter je nach Methode
9 }

10 }

Listing 1. Beispiel für JRPC

Jede Nachricht im Protokoll erhält zudem einen Header mit dem Feld Content-Length,
der die Größe der Nachricht festlegt. Ein komplettes Beispiel befindet sich in Listing 1.
Nachdem der Client die Anfrage verschickt hat, bearbeitet der Language Server die
übergebene Methode und sendet eine passende JSON-RPC-Antwort zurück. Je nachdem,
welche Methode verwendet wird, wird im Language Server unterschiedliche Funktionalität
ausgeführt. Eine Vielzahl von standardisierten Methoden werden in der LSP-Spezifikation
definiert, um die Kommunikation zwischen Client und Language Server zu ermöglichen.
Einige der wichtigsten und für diese Arbeit relevanten Methoden sind im Folgenden beispiel-
haft aufgeführt:

(1) sendMessages: Diese Methode ermöglicht es dem Language Server, Nachrichten
direkt an den Client zu übermitteln. Dabei können sowohl allgemeine Statusin-
formationen als auch konkrete Hinweise, wie beispielsweise Fehlermeldungen oder
Benachrichtigungen über erfolgreiche Kompilierungen, übertragen werden.

(2) inlayHint: Mithilfe dieser Methode werden Inlay Hints an den Client gesendet.
Diese enthalten Informationen wie berechnete Typen oder ergänzende Hinweise und
werden direkt im Quelltext an den entsprechenden Positionen angezeigt. Für die in
dieser Arbeit entwickelte Erweiterung stellt diese Methode eine zentrale Grundlage
dar, da die Typinferenz-Ergebnisse auf diesem Weg an den Entwickler übermittelt
werden.

(3) hover: Diese Methode ermöglicht es dem Client, detaillierte Zusatzinformationen
über eine bestimmte Codeposition abzurufen. Wird der Mauszeiger beispielsweise
über eine Variable oder Methode bewegt, sendet der Client eine Anfrage an den Server,
der daraufhin weiterführende Informationen wie Typdefinitionen, Dokumentationen
oder Aufrufhierarchien zurückliefert.

Diese und viele weitere Methoden sind Teil der offiziellen LSP-Spezifikation und bilden die
Grundlage für die standardisierte Kommunikation zwischen dem Language Server und den
unterstützten IDEs. Insbesondere die Methoden inlayHint und hover sind essenziell für
die Integration der in dieser Arbeit umgesetzten Typinferenzmechanismen.
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2.3.2 LSP4J - LSP in Java. Das LSP stellt eine Spezifikation dar, aber es ist keine konkrete
Implementierung. In der Programmiersprache Java gibt es mit LSP4J eine offizielle Imple-
mentierung, die von der Eclipse Foundation zur Verfügung gestellt wird [1]. Die grundlegende
Kommunikation zwischen Client und Server wird von LSP4J übernommen. Es trennt die
Protokolllogik von der Anwendungslogik. Indem es vordefinierte Interfaces bereitstellt, ab-
strahiert es die standardisierten LSP-Nachrichtenformate. Es gibt eigene Methoden innerhalb
der Interfaces, die je nach dem welche Nachricht durch den Client an den Server gesendet
wurde ausgeführt werden. Die Rückgabewerte der Methoden werden wieder an den Client
übermittelt. Die Parameter werden in Java Objekte umgewandelt. Eine solche Methode kann
in Listing 2 nachvollzogen werden. Beispielhaft wird hier die Methode für die Anforderung der
InlayHints verwendet. Der Rückgabetyp beinhaltet eine Liste an Inlayhints. Das vereinfacht
die Entwicklung erheblich und erlaubt es gleichzeitig, auf stabile, getestete Kommunika-
tionspfade zurückzugreifen. Ein weiterer Vorteil von LSP4J in diesem Zusammenhang ist,
dass der Compiler von Java-TX ebenfalls in Java verfasst ist. So ist es möglich, dass die
Language Server und der Compiler direkt miteinander kommunizieren, ohne dass es weitere
Übersetzungs- oder Integrationsschichten gibt.

1 @Override
2 public CompletableFuture <List <InlayHint >> inlayHint(InlayHintParams

params) {
3 ...
4 }

Listing 2. Beispielmethode von LSP4J

Der Datenaustausch erfolgt standardmäßig über die Standard-Ein- und -Ausgabe. LSP4J
unterstützt jedoch auch andere Transportprotokolle wie TCP oder UDP. Um einen voll
funktionsfähigen Language Server zu erstellen, müssen innerhalb von LSP4J verschiedene
Komponenten implementiert werden, die jeweils unterschiedliche Funktionen bieten, etwa
für Textverarbeitung, Diagnostik oder Code-Aktionen.

3 Projektüberblick
Der Language Server, der hier vorgestellt wird, hat als Hauptzweck, dem Entwickler
Typinformationen anzuzeigen und ihm die Wahl zwischen mehreren möglichen Typen
zu lassen. Außerdem ist es das Ziel des Language Servers, dass er syntaktische Fehler in
Java-TX erkennt und sie visuell hervorhebt. Weil die reguläre Java-Syntax in fast allen
modernen Entwicklungsumgebungen standardmäßig unterstützt wird, führen die spezifischen
Sprachkonstrukte von Java-TX häufig dazu, dass sie innerhalb der IDE fehlerhaft markiert
werden.

3.1 Überblick über die Hauptkomponenten
Die gesamte Extension setzt sich aus drei klar abgegrenzten Komponenten zusammen, die
zwar miteinander kommunizieren, aber funktional unabhängig sind:

(1) Compiler-Interface: Das Compiler-Interface ist ein Bestandteil des Java-TX-
Compilers und stellt die Verbindung zu ihm her. Es erlaubt den Zugriff auf die
vom Compiler erstellten ResultSets und den abstrakten Syntaxbaum (AST), den
der Compiler erzeugt hat. Außerdem ist das Interface dafür zuständig, aus dem
vollständigen, typisierten Quellcode den Bytecode zu erstellen.
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(2) Language Server: Die zentrale Business-Logik der Anwendung wird im Language
Server verwaltet. Er untersucht die Informationen, die der Compiler bereitstellt,
legt die Positionen für diagnostische Hinweise fest und liefert Typhinweise (Inlay
Hints). Dank dieser Abstraktion können ihn verschiedene Entwicklungsumgebungen
entkoppelt genutzt werden.

(3) Clients: Die Clients agieren als Darstellungsschicht und kommunizieren über das
LSP mit dem Language Server. Sie empfangen und fragen die Informationen, die
der Server liefert, wie etwa Typhinweise, Fehlermeldungen oder Quick-Fixes ab und
visualisieren diese innerhalb der jeweiligen IDE.

3.2 Unterstützte Entwicklungsumgebungen
Selbst wenn die Clients meist auf bestehenden Frameworks beruhen, erfordert ihre Entwick-
lung dennoch einen gewissen Aufwand. Die jeweiligen Client-Erweiterungen müssen den
Language Server initialisieren und seinen Lebenszyklus verwalten. Obwohl diese Aufwände
normalerweise gering sind, benötigen sie dennoch Tests und Wartung bei zukünftigen Än-
derungen.
In Anbetracht dieser Einschränkungen wurde die Entscheidung getroffen, nur eine Auswahl
der gängigen Entwicklungsumgebungen zu unterstützen. Es wurden gängige und praxisnahe
IDEs ausgewählt, um eine hohe Nutzbarkeit zu gewährleisten.
Die Entwicklungsumgebungen, die ausgewählt wurden, sind:

(1) Visual Studio Code: Visual Studio Code ist ein populärer Editor, der vor allem für
seine hohe Erweiterbarkeit bekannt ist. Diese Umgebung wurde als Hauptzielplat-
tform ausgewählt, weil sie eine große Nutzerbasis hat und Extensions leicht integriert
werden können.

(2) IntelliJ IDEA: Die IDE IntelliJ IDEA gehört zu den meistgenutzten Optionen für
Java [2]. Durch die einfache Installation von Plugins und die große Verbreitung im
Java-Umfeld ist sie eine wichtige Zielplattform für Java-TX.

(3) Emacs: Emacs ist im Linux-Umfeld ein weitervererbter konfigurierbarer Editor, der
insbesondere im Programmiersprachenforschung häufig eingesetzt wird. Er kann über
lsp-mode mit der Language Server verbunden werden.

4 Funktionalität des Language Servers
4.1 Syntaxhighlighting

Fig. 6. Syntaxcheck innerhalb der IDE
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Das Syntaxhighlighting hebt fehlerhafte Syntax hervor. Fehler, welche durch das Parsen von
ANTLR erhalten werden, werden unterstrichen und angezeigt (vgl. Abbildung 6). Die durch
ANTLR enthaltenen Fehlerbeschreibungen werden angezeigt. Da Java-TX zwar eine Java-
ähnliche Syntax besitzt, sie jedoch ohne Typen arbeitet, ist es essentiell dieses Feature zu
unterstützen. Dadurch kann eine sinnvolle Arbeit mit Java-TX in modernen IDEs garantiert
werden. Wenn dieses Feature nicht existieren würde, würden gar keine Syntaxfehler erkannt,
oder eine Syntaxerkennung der Java-Syntax stattfinden. Ein Syntaxfehler ist in Abbildung 6
dargestellt.

4.2 Typehints und Typanzeige
Die vom Typinferenzalgorithmus ermittelten Typen werden dem Entwickler als Typhinweise
direkt vor den entsprechenden Variablen angezeigt. Es ahmt die Typdeklarationen der
klassischen Java-Syntax nach, was die Lesbarkeit des Codes verbessert, ohne dass der
Entwickler die Typen ausdrücklich angeben muss. Die berechneten Typen werden zusätzlich
als Informations-Diagnostiken unterhalb der Variablen dargestellt, um eine konsistente und
redundante Darstellung der Ergebnisse zu gewährleisten. Es werden nur valide Inlayhints
angezeigt. Falls eine Variable mehrere mögliche Typen besitzt, werden sie im Inlayhint
zusammen aufgeführt. Die verschiedenen Möglichkeiten werden durch das Zeichen | getrennt.
Außerdem wird für jeden einzelnen Typ eine eigene Diagnostik erstellt, damit der Entwickler
eine gezielte Auswahl treffen kann. Außerdem ermöglicht die Erweiterung das automatische
Einfügen eines vorgeschlagenen Typs über einen Quick-Fix in den Programmcode.

4.3 Einfügen von Typen

Fig. 7. Inlayhints mit Diagnostiken.

Ein Quick-Fix wird automatisch für jeden möglichen Typ einer Variablen erstellt, den der
Language Server ermittelt. Mit dieser Funktion kann der Entwickler einen konkreten Typ
direkt im Programmcode einfügen, ohne dass er ihn manuell eingeben muss.
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Wenn man einen Quick-Fix auswählt, wird nicht nur der passende Typ in den Code eingefügt,
sondern auch die interne Logik zur Typauswahl aktualisiert. Das heißt: Wenn man einen
konkreten Typ für eine Variable festlegt, werden alle nun ungültigen Typkombinationen
ausgeschlossen. So wird garantiert, dass nur gültige und konsistente Typkombinationen für
die verbleibenden Typplatzhalter verbleiben. Die inhärente Typabhängigkeit innerhalb der
vom Compiler erstellten ResultSets ist der Grund für dieses Verhalten: Wenn man einen
Typ auswählt, beeinflusst das die Gültigkeit der anderen Typzuweisungen. Eine Auswahl
und die Inlayhints können in Abbildung 7 nachvollzogen werden.

Der Quellcode wird beim Einfügen direkt verändert, im Gegensatz zu den rein informa-
tiven Inlay-Hints, die nur zusätzliche Informationen bieten, aber keinen Einfluss auf den
Programmtext haben.

4.4 Fehlererkennung und Diagnostik

Fig. 8. Fehlermeldung bei fehlenden Imports.

Wenn ein Programm nicht erfolgreich mit dem Java-TX-Compiler kompiliert werden kann,
wird eine Fehlermeldung erstellt, als Nachricht an den Client gesendet wird. Die genaue
Beschreibung des Kompilierungsfehlers werden in dieser Meldung angezeigt.
Typische Ursachen für Fehler sind zum Beispiel fehlende Import-Anweisungen für bestimmte
Typen oder nicht auflösbare Referenzen. Dies kann in Abbildung 8 gesehen werden. Indem
diese Fehler direkt angezeigt werden, hat der Entwickler die Möglichkeit, genau auf die
Ursache zu reagieren und entsprechende Anpassungen vorzunehmen. Das ist ein wichtiger
Faktor für die Effizienz der Entwicklungsarbeit mit Java-TX.

4.5 Live-Compilation und Ausgabe
Sobald der Programmcode in der Entwicklungsumgebung gespeichert wird, initiiert das
Compiler-Interface automatisch einen Kompilierungsvorgang. Durch diesen Prozess wird
ausführbarer Bytecode erstellt, der als .class-Dateien ausgegeben wird.
Die Dateien, die erstellt werden, landen im gleichen Verzeichnis wie die Quelldateien,
strukturiert in einem separaten /out-Ordner. Dies kann in Abbildung 9 gesehen werden. In
diesem Ordner sind alle kompilierten Klassen abgelegt, sodass das Programm ohne weiteren
manuellen Eingriff direkt ausgeführt werden kann.

Fig. 9. Bytecode innerhalb des /out Ordners.
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Durch die Automatisierung der Kompilierung ist kein manuelles Kompilieren über die
Konsole notwendig. Das vereinfacht den Entwicklungsprozess mit Java-TX erheblich und
sorgt dafür, dass die Sprache gut in moderne Entwicklungsumgebungen integriert ist.

5 Architektur des Systems

Fig. 10. Gesamtarchitektur des Systems.

Die Architektur des Language Servers ist insgesamt aufgebaut auf den drei Hauptkompo-
nenten, die vorher beschrieben wurden. Diese können in Abbildung 10 nachvollzogen werden.
Das Compiler-Interface, das Teil des Compilers ist, wird als Abhängigkeit dem Language
Server hinzugefügt und kommuniziert innerhalb der Java-Anwendung direkt mit ihm.
Der Language Server ist das Bindeglied zwischen dem Compiler-Interface und den unter-
schiedlichen Clients. Er kümmert sich um die Aufbereitung und Weiterverarbeitung der
Daten, die der Compiler liefert. Um die Zugriffe auf das Compiler-Interface zu minimieren,
da der Java-TX-Compiler und somit auch das Interface eine geringe Laufzeitperformance
haben, werden empfangene Daten im Server zwischengespeichert und nur beim Speichern
aktualisiert. Der Language-Server versucht die vorhandenen Daten korrekt anzupassen.
Die Clients, tauschen über System.in und System.out Nachrichten mit dem Language
Server aus. Die standardisierten LSP-Nachrichten, die Informationen wie Typhinweise, Diag-
nostiken oder Textänderungsvorschläge umfassen, werden über diesen Kanal übertragen.

5.1 Komponenten im Detail
Anschließend werden die einzelnen Komponenten im Detail beschrieben und Designentschei-
dungen erläutert.

5.1.1 Compiler-Interface. Im Java-TX-Compiler ist das Compiler-Interface integriert. Es
erlaubt das Kompilieren einer Quellcodedatei basierend auf ihrer URI, normalerweise der
Datei, die derzeit in der IDE geöffnet ist. Falls erforderlich, werden weitere abhängige
Dateien zusätzlich mitkompiliert.
Ein Transferobjekt wird nach dem Kompilierungsvorgang an den Language Server über-
mittelt. Es umfasst den abstrakten Syntaxbaum, in dem spezielle Typplatzhalter anstelle
konkreter Typen eingefügt wurden, sowie sogenannte ResultSets, die die entsprechenden
Typauflösungen liefern. Generische Typen sind ebenfalls Bestandteil des Transferobjekts.
Die Typplatzhalter, die im AST enthalten sind, können durch die konkreten Typinformatio-
nen aus dem ResultSet ersetzt werden. Oft gibt es mehrere ResultSets, weil verschiedene
gültige Typkombinationen existieren.

1 import java.lang.Integer;
2

3 class Test {
4 addOne(i){
5 return i+1;
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6 }
7 }

Listing 3. Ursprüngliche Klasse

1 class Test {
2

3 Test()({
4 })::TPH V
5 TPH N addOne(TPH O i)({
6 return (i)::TPH O | 1;
7 })::TPH R
8

9 Test()({
10 super (()) Signature: [TPH T];
11 })::TPH U
12

13 }

Listing 4. Abstrakte Syntax

Ein Beispiel für diese Typplatzhalter ist in Listing 3 und Listing 4 zu finden. Der Code in
Listing 3 beinhaltet, wie es in Java-TX üblich ist, keine Typnotationen für die Methode
addOne und ihren Parameter i. Dieser Code wird beim Parsen in den abstrakten Syntaxbaum
überführt, wobei die Methode addOne den Platzhalter TPH_N und der Parameter i den
Platzhalter TPH_O erhält (vgl. Listing 4).
Konkrete Typauflösungen für diese Platzhalter sind im zugehörigen ResultSet (Listing 5)
zu finden. Auf diese Weise können die ursprünglichen Platzhalter durch abgeleitete Typen
ersetzt werden.

1 [[(TPH P = java.lang.Integer),
2 (TPH O = java.lang.Integer),
3 (TPH N = java.lang.Integer),
4 (TPH Q = java.lang.Integer)]]

Listing 5. ResultSet

Im Verlauf des Kompilierungsvorgangs wird auch Bytecode erstellt, der im Verzeichnis
out abgelegt wird, relativ zum Pfad der kompilierten Datei.
Sollen jedoch nur Syntaxfehler aufgetan werden, muss der Compiler die gesamte Datei immer
wieder verarbeiten, um eine vollständige Liste aller Fehler zu erstellen. Das Nachteilige daran
ist, dass die Zeitspanne zwischen Anfrage und Antwort sich dadurch erhöht, was für eine
Echtzeitverarbeitung in einer IDE problematisch ist. Eine Erweiterung, die dem Entwickler
sofortige Rückmeldungen geben soll, kann unter diesen Umständen nur eingeschränkt per-
formant arbeiten.
Das Compiler-Interface bietet deshalb die Möglichkeit, nur nach Parserfehlern zu suchen,
ohne die gesamte Typinferenz zu durchlaufen. Hierfür kommt die ANTLR-Grammatik des
Java-TX-Compilers zum Einsatz. In diesem Fall gibt das Parser-Interface syntaktische Fehler
aus. Eine Übersicht der Interfaces können in Abbildung 11 gesehen werden.
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Fig. 11. Die Parserinterfaces

5.1.2 Language Server. Der Language Server nutzt das Compiler-Interface, speichert und
aktualisiert interne Datenstrukturen und reagiert auf die Anfragen des Clients. Weil die
Kommunikation mit dem Compiler-Interface eine vergleichsweise hohe Latenz hat, wird
versucht, direkte Anfragen an dieses Interface weitestgehend zu umgehen.
Es wurden unterschiedliche interne Mechanismen eingeführt, die es ermöglichen, relevante
Positionen und ResultSets direkt im Server anzupassen, wenn am Quelltext geändert oder
ein bestimmter Typ ausgewählt wird. Dadurch können Compilerzugriffe, die viel Zeit in
Anspruch nehmen, umgangen werden.
Der Language Server bereitet die Daten, die er vom Compiler-Interface erhält, auf und
speichert sie zwischen. Typauflösungen für die einzelnen Typplatzhalter aus den ResultSets
werden als Inlayhint an den Client gesendet. Außerdem werden Informationsdiagnosen
erstellt. Quick-Fixes sind auch verfügbar und erlauben es dem Nutzer, einen Typ
auszuwählen, um ihn direkt in den Quellcode einzufügen.

Fig. 12. Genaue Architektur des Langauge Servers. (Nur ein Handler mit Service wird gezeigt)

Die Informationen, die zur Berechnung der Position benötigt werden, stammen aus den
Tokenpositionen, die ANTLR generiert und die im AST enthalten sind.
Parserfehler, welche über das Compiler-Interface bereitgestellt werden, sind Diagnosen, die an
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den Client zurückgegeben werden. Ein genaues Abbild der Architektur wird in Abbildung 12
dargestellt.

Die Klasse JavaTXTextDocumentService ist der zentrale Einstiegspunkt für alle eingehen-
den Anfragen. Sie implementiert ein Interface, das von LSP4J bereitgestellt wird, und bietet
für jede Methode, die in der LSP-Spezifikation definiert ist, eine entsprechende Java-Methode
an.
Weil Java-TX nicht alle Funktionen im Protokoll benötigt, haben viele dieser Endpunkte nur
leere Rückgaben. Für die Funktionalität von Java-TX sind die folgenden Methoden jedoch
unerlässlich:

(1) change: Wird ausgelöst, wenn am aktuell geöffneten Dokument Änderungen
vorgenommen werden. Parserfehler werden hierbei aktualisiert.

(2) codeAction: Ist dafür da, um Quick-Fixes, also Vorschläge für einzufügende Typen,
bereitzustellen.

(3) formatting: Wird angefordert, wenn eine Dokumentenformatierung gewünscht ist.
Dieses Merkmal hat jedoch eine geringere Priorität.

(4) inlayHint: Fordert Inlay-Hints an. Dieses Feature ist zusammen mit der Typauswahl
das Herzstück der Extension. Sie zeigen inferierte Typen an ohne den Quellcode zu
verändern.

(5) save: Wenn das Dokument gespeichert wird, wird das Compiler-Interface erneut
aufgerufen. Die Cache-Daten werden überschrieben, um einen aktuellen und konsis-
tenten Datenstand zu schaffen.

Handlerklassen, die speziell für die verschiedenen Methoden des Language Servers entwick-
elt wurden, werden eingesetzt, um Flexibilität zu gewährleisten. Diese Handler übernehmen
die Fachlogik und besitzen handle-Methoden, die die vom Client gesendeten Parameter
annehmen und passende Antworten zurück geben.

(1) ChangeHandler: Kümmert sich um alle Änderungen im Dokument. Er ruft das
Parser-Interface des Compilers auf und sendet resultierende Diagnostiken direkt
an den Client. Die internen Cache-Dateien werden angepasst, um dies zu berück-
sichtigen. Falls nötig werden die ResultSets eingeschränkt, und illegale ResultSets
entfernt. Wenn ein Typ ausgewählt wird, wird einer Variable dann einen festen
Wert zugeschrieben. Dadurch können vorher legale ResultSets illegal werden, da die
Variable dort einen anderen Typ annimmt. Der entsprechende Typhint, Quickfix und
die dazugehörige Diagnostik entfallen. Ohne einen erneuten Kompilierungsvorgang
wird der AST abgefragt. Die Typplatzhalter bleiben dabei konsistent, was eine
Positionsaktualisierung der Typvariablen ermöglicht. Es erfolgt keine automatische
Erkennung neuer Typen. Dies geschieht nur durch eine vollständige Kompilierung,
die beim Speichern ausgelöst wird. Alle aktualisierten Typhinweise und Diagnostiken
werden erneut gecacht und veröffentlicht.

(2) CodeActionHandler: Verantwortlich für das Anbieten der Quick-Fixes. Die Auswahl
der Typen erfolgt anhand der gecachten Diagnosen und Typhinweisen. Sobald man
einen Typ auswählt, wird über change eine neue Anfrage gesendet, die zu einer
Positionsaktualisierung und einer Einschränkung der Typauswahl führt.

(3) FormattingHandler: Diese Komponente kontrolliert das Dokument auf trailing
whitespaces und beseitigt sie, wenn eine Formatierungsanfrage gestellt wird. Es
wurden keine weiteren Funktionen umgesetzt.

(4) SaveHandler: Eine erneute Kompilierung wird durch das Compiler-Interface
angestoßen. Der Cache aktualisiert sich, und Typhints sowie Diagnostiken werden
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neu erstellt. Im Gegensatz zum ChangeHandler werden hier keine Einschränkungen
des ResultSets vorgenommen, weil immer die neuesten Informationen vom Compiler
abgerufen werden.

Diese Handler nutzen spezialisierte Services und Hilfsklassen, die nach dem Single Re-
sponsibility Principle entworfen sind. Die Anwendungslogik ist dort implementiert, während
die Handler die Orchestrierung übernehmen. Die interne Datenstruktur LSPVariable wird
genutzt, um die enge Beziehung zwischen Typdiagnostiken, Typhints und Quickfixes abzu-
bilden. Sie beinhaltet die Variable, ihren Standort, alle möglichen Typen sowie den ur-
sprünglichen Typplatzhalter. Die entsprechenden Typhinweise und Diagnostiken werden
ebenfalls gecacht.

(1) CacheService: Zentrale Verwaltung aller temporären Cache-Daten. Setzt sich über-
wiegend aus Speicherfeldern und passenden Getter-/Setter-Methoden zusammen.

(2) ClientService: Service zur Kommunikation mit dem Client. Er verwaltet die Veröf-
fentlichung von Diagnostiken und Benachrichtigungen.

(3) LogService: Zuständig für das Logging auf der Client- und Serverseite. Verwendet
Log4J und die von LSP4J festgelegten Log-Level.

(4) ParserService: Dient zur Kommunikation mit dem Parser-Interface des Compilers.
Parserfehler werden durch ihn in Diagnosen umgewandelt.

(5) TextDocumentService: Kümmert sich um geöffnete Dateien, speichert Pfadinfor-
mationen, erkennt Textänderungen und setzt Vergleichs- sowie Positionslogik für
Strings um.

(6) TypeResolver: Die zentrale Komponente des Language Servers. Er kommuniziert
über das Compiler-Interface und bereitet ResultSets auf und verwaltet diese. Erstellt
Inlayhints, Diagnosen und Quick-Fixes. Identifiziert Positionen über Tokeninformatio-
nen im AST. Verwendet GenericHelper für die getrennte Verarbeitung generischer
Typen.

(7) TypeUtils: Erstellt konkrete Type-Objekte aus den ResultSets. Gibt alle gültigen
Typen für einen spezifischen Typplatzhalter zurück.

(8) TextHelper: Abstraktion für spezifische Textoperationen, wie zum Beispiel das
Festlegen von Endpositionen in einer Textdatei.

(9) GenericUtils: Behandelt generischen Typen, die über ein separates ResultSet bere-
itgestellt werden.

(10) DuplicationUtils: Entfernt redundante Typinformationen damit keine doppelten
Typhints und Typauswahllisten bei einer Variable verwendet werden.

(11) ConversionHelper: Wandelt interne Modellklassen in Inlayhints und Diagnosen um.
(12) ASTTransformationHelper: Transformiert DEN AST in interne Modellklassen, wie

beispielsweise Methodenparameter oder Konstruktorvariablen.
Intern werden eigene Modellklassen verwendet, um die Daten strukturiert zu speichern.

In der Klasse LSPVariable sind unter anderem der Name der Variable, mögliche Typen,
Positionen und der ursprüngliche Platzhalter enthalten. Die Klasse Type beinhaltet den
Namen des Typs und ein Flag, das generische Typen kennzeichnet.
Der gesamte Verarbeitungsfluss startet im JavaTXTextDocumentService, das LSP4J-
Endpunkte bereitstellt und eingehende Anfragen an die zuständigen Handler weiterleitet.
Die Kommunikation zwischen Services und Helfern wird von den Handlern orchestriert. Das
Ergebnis wird von den Handler zurückgegeben und an den Client gesendet, möglicherweise
begleitet von Fehlern oder Warnungen, etwa bei nicht importierten Typen.
Es gibt neben der fachlichen Logik auch Konfigurationsklassen, die dem Client sagen, welche
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Features verfügbar sind. Die Klassen, die LSP4J-Interfaces umsetzen, bieten eine granulare
Kontrolle über die Funktionsvielfalt.
Zum Start des Language-Servers existiert eine Klasse mit main-Methode, die den Language
Server startet.

5.1.3 Editor-Clients. Clients, die mit dem Language Server kommunizieren, sind normaler-
weise sehr leichtgewichtig und lassen sich durch bereits vorhandene Frameworks umsetzen. Die
grundlegende Client-Unterstützung ist in vielen Entwicklungsumgebungen bereits vorhanden,
weil die Spezifikation der LSP berücksichtigt wurde. Die Hauptaufgabe eines Clients ist es,
den Language Server zu starten, Anfragen zu formulieren und die erhaltenen Informationen
richtig in der Benutzeroberfläche darzustellen.
Die Implementierung wird exemplarisch dargestellt, indem sie in Visual Studio Code integri-
ert wird.
Die Erweiterung nutzt die Standardprojektstruktur für Extensions, die Microsoft für Visual
Studio Code vorgesehen hat. Dabei wird Typescript verwendet. Node.js wird zum bauen
und testen benutzt. Die Bibliothek vscode-languageclient wird verwendet, um die LSP
spezifischen Funktionen zu bieten.
Die Datei extension.ts enthält die Hauptlogik der Extension. Diese Datei legt fest, wann
und auf welche Weise der Language Server gestartet wird. Wie in Listing 6 dargestellt, wird
der Language Server für alle Dateien mit der Endung .jav durch das Pattern **/*.jav
aktiviert. Danach wird der Server mit festgelegten Optionen initialisiert und gestartet.

1 const clientOptions: LanguageClientOptions = {
2 documentSelector: [{ scheme: 'file', language: 'java' }],
3 synchronize: {
4 fileEvents: vscode.workspace.createFileSystemWatcher(

'**/*. jav')
5 },
6 revealOutputChannelOn: 4
7 };
8

9

10

11 const client = new LanguageClient(
12 'javaTxLanguageServer ', // ID des Clients
13 'Java -TX␣Language␣Server ', // Name des Clients
14 serverOptions ,
15 clientOptions
16 );

Listing 6. Initialisierung des Servers

Im Zentrum der Startlogik steht die Festlegung der serverOptions (siehe Listing 7). An
dieser Stelle wird bestimmt, wie der Language Server gestartet werden soll. Hierbei wird ein
Java-Prozess mit dem Befehl java -jar ... gestartet, weil der Language Server über LSP4J
in Java umgesetzt ist. Es ist möglich, zwischen Debug- und Normalmodus zu unterscheiden.
In diesem Fall gibt es keinen separaten Debug-Modus, weshalb beide Modi denselben
Startbefehl nutzen.

1 const serverOptions: ServerOptions = {
2 run: {
3 command: 'java',
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4 args: ['-jar', workspaceFolder + '/
JavaTXLanguageServer -1.0- SNAPSHOT -jar -with -
dependencies.jar'],

5 },
6 debug: {
7 command: 'java',
8 args: ['-jar', workspaceFolder + '/

JavaTXLanguageServer -1.0- SNAPSHOT -jar -with -
dependencies.jar'],

9 }
10 };

Listing 7. Initialisierung des Servers

Weitere Informationen wie der Name, die Beschreibung oder Symbole der Extension werden
in der Datei package.json verwaltet. Das Tool vsce, welches von Visual Studio Code
bereitgestellt wird, wird genutzt, um den finalen Build der Extension zu erstellen. Dies
erstellt eine .vsix-Datei, die als installierbare Extension fungiert.
Es ist notwendig, dass Java bereits installiert ist, um die Extension auszuführen, da der
Language Server auf einer Java-basierten Architektur aufbaut. Weil der Compiler, auf
dem alles basiert, ebenfalls in Java geschrieben ist, entsteht dadurch keine zusätzliche
Abhängigkeit.

Die Einbindung in andere Entwicklungsumgebungen wie IntelliJ IDEA oder Emacs
geschieht auf ähnliche Weise. Für IntelliJ IDEA wird unter anderem das von Red Hat
entwickelte Framework LSP4IJ eingesetzt. Es ermöglicht die einfache Anbindung eines Lan-
guage Servers, indem man die Startbefehle und die unterstützten Dateitypen konfiguriert.
In Emacs kann man ebenfalls über die lsp-mode eine Integration vornehmen, indem man
dort ein Startkommando für den Language Server festlegt. Dies ist zum jetzigen Zeitpunkt
jedoch noch nicht umgesetzt. Die .jar-Datei des Servers ist unabhängig nutzbar und funk-
tioniert auch ohne eine spezifische IDE-Integration.
Generische LSP-Clients, die über ein Benutzerinterface konfiguriert werden können, existieren
neben individuellen Integrationen. Sie erlauben es, beliebige Language Server zu nutzen,
indem man ein Startkommando und die zugehörigen Dateimuster angibt. Dies wird zum
Beispiel für Intellij IDEA verwendet.

5.2 Kommunikationswege und Datenfluss
Ein vereinfachtes Beispiel zeigt den grundlegenden Datenfluss des Systems. Der Kommunika-
tionsfluss zwischen Client, Language Server und Compilerinterface kann man grundsätzlich
in zwei Richtungen unterteilen: Entweder der Client stellt gezielte Anfragen an den Language
Server, oder dieser sendet proaktiv Informationen an den Client.
Ein typischer Ablauf startet damit, dass der Nutzer eine Datei speichert. Hierbei schickt der
Client eine save-Nachricht an den Language Server. Daraufhin ruft der Server das Com-
pilerinterface auf, welches die modifizierte Datei untersucht und entsprechende Ergebnisse
(AST, ResultSets, Parserfehler usw.) zurückliefert.
Der Language Server kümmert sich dann um die Verarbeitung der empfangenen Daten.
Parserfehler werden als Diagnostiken unmittelbar an den Client gesendet. Währenddessen
werden Typhinweise und Quick-Fix-Vorschläge basierend auf den ResultSets erstellt und im
internen Cache abgelegt.
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Der Client fordert dann weitere Informationen vom Server an, zum Beispiel durch gezielte
Abfragen nach InlayHints oder CodeActions. Diese Informationen werden nicht erneut
berechnet, sondern direkt aus dem Cache zurückgegeben, weil die Berechnung bereits im
Rahmen des vorherigen save-Events stattfand.
Darüber hinaus informiert der Language Server den Client über neue Typhinweise und
Diagnostiken, was es ermöglicht, dass die Benutzeroberfläche sofort angepasst wird.

Fig. 13. Basiskommunikationsfluss

Das Kommunikationsmuster, das hier beschrieben und in Abbildung 13 aufgezeigt wird,
ist ein typisches Beispiel für den Ablauf zwischen Client und Server, der bei allen Interak-
tionen ähnlich ist. Egal, welche Methode (z.B. change, hover, codeAction) genutzt wird,
die Interaktion läuft immer nach dem gleichen Prinzip ab: Eine Anfrage, eventuell eine
Kommunikation mit dem Compilerinterface, die Verarbeitung der Daten und schließlich die
Rückgabe an den Client oder ein Push von Informationen durch den Server.

6 Implementierung mit LSP4J und Vorraussetzungen
6.1 Technische Hintergründe
Mindestens Java 23 muss installiert sein, um die Java-TX Language Server Extension
auszuführen. Es gibt keine weiteren spezifischen Systemvoraussetzungen. Um den Java-TX-
Compiler auszuführen, wird ebenfalls die gleiche Java-Version benötigt, sodass keine weiteren
Abhängigkeiten erforderlich sind.
Maven wird Intern verwendet, um benötigte Bibliotheken und externe Abhängigkeiten
automatisch zu finden und bereitzustellen. Die Struktur des Projekts ist die eines klassischen
Maven-Projekts, was eine einfache Integration und Wartung ermöglicht.

Weil während der Typinferenz und Kompilierung viele Berechnungen angestellt werden,
kann es bei Programmen, die sehr groß oder komplex strukturiert sind, zu einer spürbaren
Verzögerung der Antwortzeit des Language Servers kommen. Eine Caching-Strategie wurde
implementiert, um diesem Umstand entgegenzuwirken, indem sie wiederholte Anfragen
möglichst performant bedient und die Anzahl der vollständigen Kompilierungsvorgänge
minimiert.
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7 Integration in Entwicklungsumgebungen
7.1 Visual Studio Code
Die .vsix-Datei kann manuell in Visual Studio Code installiert werden.

Die Installation wird in diesen Schritten durchgeführt:
(1) Visual Studio Code starten und zum Erweiterungen-Tab navigieren. Dies ist durch

die Suchleiste, die linke Menüleiste oder Strg + Shift + X möglich.
(2) Das Drei-Punkte-Menü (. . . ) in der oberen rechten Ecke öffnen.
(3) "Install from VSIX..." aus auswählen.
(4) Zum Ordner, in dem die .vsix-Datei, gespeichert ist navigieren und die Datei

auswählen. Die Installation geschieht danach automatisch.
Nach der Installation kann die Erweiterung für alle Dateien mit der Endung .jav verwendet

werden. Bei etwaigen Problemen kann ein Neustart von Visual Studio Code helfen.

7.2 IntelliJ IDEA
Die Integration der Java-TX Language Server Erweiterung in IntelliJ IDEA erfolgt, indem
die .jar-Datei des Language Servers heruntergeladen und sie dann manuell registriert wird.
Anhand diesen Schritten kann die Erweiterung installiert werden.

Zu den Einstellungen unter File > Settings > Plugins navigieren und das Plugin LSP
Support (LSP4IJ) von Red Hat suchen und installieren. Mit diesem Plugin können beliebige
Language Server über das LSP-Protokoll eingebunden werden.

(1) Nach der Installation kann ein neuer Eintrag mit dem Namen Language Servers in
der linken Seitenleiste geöffnet werden.

(2) Einen neuen Eintrag hinzufügen, indem mit der rechten Maustaste auf die Liste
geklickt wird und New Language Server ausgewählt wird.

(3) Einen beliebigen Namen verwenden, zum Beispiel Java-TX. Im Command-Feld,
welches den Befehl enthalten muss um den Language Server zu starten, kann folgender
Befehl verwendet werden: java -jar "<Pfad/zur/LanguageServer.jar>"

(4) Zum Tab Maps wechseln.
(5) Den Punkt File name pattern auswählen.
(6) Die Konfiguration um ein neues Mapping erweitern, um den Language Server für

Dateien mit der Endung .jav zu aktivieren. Dazu kann auf das + gedrückt und
Folgendes hinzugefügt werden: File name pattern: *.jav, Language ID: java_tx

(7) Um die Erweiterung zu verwenden, kann eine .jav-Datei geöffnet werden.
Sobald eine .jav Datei geöffnet wird, wird unten rechts in der Statusleiste der aktuelle

Verbindungsstatus des Language Servers angezeigt.

8 Fazit und Ausblick
8.1 Zusammenfassung der Ergebnisse
Insgesamt wurde ein Language Server erstellt, der die Hauptvorteile von Java-TX aufgreift
und gezielt unterstützt. Die Erweiterung, die entwickelt wurde, erlaubt es Entwicklerinnen
und Entwicklern, die typlose Syntax von Java-TX zu verwenden, ohne die gewohnte Unter-
stützung durch moderne Entwicklungsumgebungen aufgeben zu müssen.
Obwohl es noch Einschränkungen gibt, vor allem bezüglich der Laufzeit, umfasst der Lan-
guage Server bereits eine Reihe von nützlichen Funktionen. Die aufgrund der langsamen
Kompilierungsvorgänge des Java-TX-Compilers erforderliche Caching-Strategie kann in
einigen Fällen zu inkonsistenten Anzeigen führen. Hier sollten Verbesserungen erfolgen.
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Dennoch ist es ein großer Vorteil, dass wichtige Funktionen wie die direkte Kompilierung,
die visuelle Darstellung von inferierten Typen und die Auswahl möglicher Typoptionen
integriert wurden. Dies ermöglicht es, Feedback zur Typinferenz zu erhalten und mit den
bereits berechneten Typen zu arbeiten. Auch Syntaxfehler der Sprache Java-TX werden
erkannt und visualisiert, was die Entwicklung vereinfacht und beschleunigt.
Die Erweiterung vereinfacht den Einstieg mit Java-TX: Sie ermöglicht die Entwicklung, ohne
einen Konsolen-Workflow nutzen zu müssen, und macht Java-TX dadurch auch für weniger
technikaffine Menschen zugänglich.
Es ist besonders bemerkenswert, dass zwei scheinbar gegensätzliche Paradigmen miteinander
verbunden werden: Einerseits bewahrt die Java-TX den typlosen Ansatz, während ander-
erseits durch das Berechnen und Anzeigen der Typen die Typsicherheit von Java gewahrt
bleibt. So bringt der Language Server die Vorzüge von dynamisch typisierten Sprachen und
die Sicherheit von statischen Typisierungen zusammen.

8.2 Nutzen des Language Servers
Die entwickelte Erweiterung hat den entscheidenden Vorteil, dass sie technische Komplex-
ität abstrahiert und den Entwicklungsprozess für Nutzerinnen und Nutzer von Java-TX
erheblich vereinfacht. Der Entwicklungsworkflow wird durch den Wegfall der manuellen
Kompilierungsschritte über die Konsole und der fehlenden Transparenz über inferierte Typen
erheblich verbessert. Java-TX als Programmiersprache wird dadurch insgesamt praktikabler
und leichter zugänglich. Vor allem für Entwicklerinnen und Entwickler, die moderne IDEs
nutzen, ist die Arbeit mit Java-TX deutlich einfacher, das ist ein wichtiger Faktor für die
Nutzbarkeit und die Akzeptanz der Sprache.

8.3 Geplante Erweiterungen
Zukünftige Erweiterungen könnten insbesondere die Unterstützung weiterer Entwicklung-
sumgebungen umfassen. Die Zielumgebung Emacs, die bereits in den Anforderungen festgelegt
wurde, ist noch nicht implementiert.
Durch zukünftige Optimierungen der Compiler-Performance könnte die momentan verwen-
dete cache-basierte Verarbeitung im Language Server überarbeitet und auf eine direkte
Kommunikation mit dem Compiler gesetzt werden. Auf diese Weise würden bestehende
Ungenauigkeiten oder falsche Darstellungen minimiert.
Hauptfokus liegt jedoch auf den Fehlerkorrekturen und allgemeine Verbesserungen des
Language Servers, um die Stabilität und Funktionalität der Erweiterung weiter zu verbessern
und bestehende Bugs zu beheben.
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Umsetzbare Abbildung von Untersorten und partiellen
Operationen auf Many-Sorted-Algebra mit Konstruktoren
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Untersorten und partielle Operationen sind grundlegende Konzepte der Programmierung und doch werden
sie in Sprachen wie Haskell, Coq oder Isabelle/HOL nicht unterstützt. Die Lösung dafür ist eine Abbildung
von Order-Sorted-Algebra (OSA) auf die Many-Sorted-Algebra (MSA) unter Berücksichtigung von Konstruk-
toren. Sowohl Common-Algebraic-Specification-Langauge (CASL) als auch OSA geben eine Abbildung von
Untersorten auf die MSA vor. OSA diskutiert auch Ansätze zur Darstellung von partiellen Operationen. Jedoch
berücksichtigt die Spezifikation dieser Abbildung die Konstruktoren nicht, sodass die Umsetzung dieser
Abbildung in eine der oben genannten Sprachen nicht möglich ist. In diesem Papier werden die Grenzen der
Abbildung aus CASL und OSA auf MSA in Bezug auf die Umsetzbarkeit mit Konstruktoren gezeigt und eine
umsetzbare Abbildung vorgestellt, die die Konstruktoren berücksichtigt.

CCS Concepts: • Mathematics of computing → Coding theory; • Theory of computation → Proof
theory; • Computing methodologies→ Special-purpose algebraic systems.

Zusätzliche Schlagwörter und Phrasen: Untersorten, Partielle Operationen, Many Sorted Algebra, Order Sorted
Algebra, Konstruktoren, Abbildung

1 Einleitung
Untersorten und partielle Operationen sind grundlegende Konzepte der Programmierung, doch
funktionale Programmiersprachen wie Haskell, Coq [2] oder Isabelle/HOL [8] unterstützen diese
nicht: In den genannten Sprachen gibt es zwar Typklassen und Monaden, aber das reicht nicht für
die Umsetzung von Untersorten im objektorientierten Sinne und weit übergreifenden partiellen
Operationen. Die Lösung dafür ist eine Abbildung von Untersorten und partiellen Operationen
auf eine einfachere Struktur: Many-Sorted-Algebra (MSA) [10]. Dabei ist zu beachten, dass die
genannten SprachenOperationen streng aufteilen in Konstruktoren, zur Darstellung von Sorten, und
Funktionen, zur Berechnung von Ergebnissen. In Order-Sorted-Algebra (OSA) [5] sowie in Common-
Algebraic-Specification-Language (CASL) [7] werden die Sorten nach der Untersortenrelation
geordnet und eine Abbildung auf MSA vorgestellt.
Jedoch werden bei dieser Abbildung die Konstruktoren nicht berücksichtigt. So soll laut dieser

Abbildung eine Untersorte 𝑠 an ihre Obersorte 𝑠′ durch eine Operation 𝑒𝑚𝑏𝑒𝑑𝑠,𝑠′ angepasst werden.
Benutzt man beispielsweise zur Darstellung partieller Operationen eine Sorte 𝑈𝑛𝑑𝑒 𝑓 als Unter-
sorte von 𝑠′, so würde bei der Abbildung auf eine funktionale Programmiersprache die Funktion
𝑒𝑚𝑏𝑒𝑑𝑈𝑛𝑑𝑒𝑓 ,𝑠′ einen Term der Sorte 𝑠′ zurückgeben, der dann ein Standardwert für 𝑠′ ist, wodurch
𝑒𝑚𝑏𝑒𝑑 (𝑢𝑛𝑑𝑒 𝑓 ) nicht darstellbar ist. Grund für das Problem ist, dass die Anpassungsoperation kein
Konstruktor ist.

Daraus ergibt sich die Forschungsfrage: Wie kann eine Abbildung von Untersorten und partiellen
Operationen auf MSA aussehen, sodass diese in funktionalen Programmiersprachen umgesetzt
werden kann?

Die Idee ist die Anpassungsoperationen als Konstruktoren der Obersorte darzustellen, um das
beschriebene Problem zu umgehen.

Authors’ Contact Information: Edward Sabinus, edward.sabinus@informatik.uni-halle.de, Martin-Luther-Universität Halle-
Wittenberg, Halle, Deutschland; Wolf Zimmermann, Martin-Luther-Universität Halle-Wittenberg, Halle, Deutschland,
wolf.zimmermann@informatik.uni-halle.de.
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Fig. 1. Anwendung: Order-Sorted-Proof-Assistant (OPA)

Das Ergebnis ist eine Abbildung von Untersorten und partiellen Operationen auf MSA, die direkt
in MSA-Unterstützende Sprachen wie beispielsweise funktionale Sprachen wie Haskell oder Coq
implementiert werden können.
Eingesetzt werden soll das in den Order-Sorted-Proof-Assistant (OPA) (vgl. Abbildung 1), der

das Ziel meiner Dissertation ist, in dem Spezifikationen und Beweise in OSA formuliert werden
und in den funktionalen Proof-Checker Coq übersetzt werden.

Im Folgenden wird zuerst die Order-Sorted-Algebra beschrieben, davon insbesondere die Konzep-
te von Untersorten und partiellen Operationen. Dannwird die Abbildung von partiellen Operationen
diskutiert. Danach wird die Abbildung von Untersorten auf MSA nach CASL sowie ihre Grenzen
dargestellt. Anschließend wird die umsetzbare Abbildung von Untersorten auf MSA vorgestellt
und an einem Beispiel erläutert. Zum Schluss werden verwandte Arbeiten diskutiert.

2 Order-Sorted-Algebra
In diesem Abschnitt wird die Order-Sorted-Algebra (OSA), entsprechend [5] eingeführt, sowie
anhand eines Beispiels demonstriert. Ebenso wird vorgestellt wie ein Beweis in der OSA aussehen
kann.

Als Grundlage für die Algebren verwenden wir Abstrakte Datentypen gemäß der Definition von
Martin Wirsing [11].

Definition 1. Order-Sorted-Signature [5]
Eine Order-Sorted-Signature ist ein Tripel Σ = (𝑆,⊏, 𝐹 ) mit

(1) 𝑆 ist die Menge von Sorten
(2) (𝑆,⊏∗) ist eine Halbordnung (Untersortenrelation)
(3) 𝐹 ist eine Familie vonMengen (𝐹𝑤,𝑠 )𝑤∈𝑆∗,𝑠∈𝑆 von Operationssymbolen mit folgender Monotonie-

Eigenschaft: 𝑓 ∈ 𝐹𝑤,𝑠 ∩ 𝐹𝑤′,𝑠′ ∧𝑤 ⊏∗ 𝑤 ′ → 𝑠 ⊏∗ 𝑠′

Eine Sorte 𝑠1 gilt als Untersorte von 𝑠2, gdw. 𝑠1 ⊏∗ 𝑠2. ⊏ ist die direkte Untersortenrelation.

Definition 2. Order-Sorted-Algebra [5]
Sei (𝑆,⊏, 𝐹 ) eine Order-Sorted-Signature. Eine (𝑆,⊏, 𝐹 )-Algebra 𝐴 = (𝐴𝑆 , 𝐴𝐹 ) ist eine Order-Sorted-
Algebra, falls

(1) 𝐴𝑆 ist eine Familie von Mengen {𝐴𝑠 |𝑠 ∈ 𝑆}, genannt Trägermengen
(2) für jedes Operationssymbol 𝑓𝑤,𝑠 ∈ 𝐹 ist die Operation 𝐴𝑓 : 𝐴𝑤 → 𝐴𝑠 ∈ 𝐴𝐹

(3) ∀𝑠, 𝑠′ ∈ 𝑆 : 𝑠 ⊏ 𝑠′ → 𝐴𝑠 ⊆ 𝐴𝑠′

(4) 𝑓 ∈ 𝐹𝑤,𝑠 ∩ 𝐹𝑤′,𝑠′ ∧𝑤 ⊏∗ 𝑤 ′ → 𝐴𝑓 : 𝐴𝑤 → 𝐴𝑠 ist äquivalent zu 𝐴𝑓 : 𝐴𝑤′ → 𝐴𝑠′ für 𝐴𝑤 .
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Definition 3. Konstruktoren [11]
Sei (𝑆, 𝐹 ) eine Many-Sorted-Signature. Die Menge 𝐹𝐶 ⊆ 𝐹 der Konstruktoren ist eine Menge von
Operationssymbolen, so dass für jeden Σ-Grundterm 𝑡 der Sorte 𝑠 ∈ 𝑆 ein Σ𝐶 -Grundterm 𝑡 ′ der Sorte 𝑠
mit 𝑡 = 𝑡 ′ existiert, wobei Σ𝐶 = (𝑆, 𝐹𝐶 ) ist.

D.h. in der Quotiententermalgebra enthält jede Äquivalenzklasse einen Konstruktorterm.
Analog dazu sind Konstruktoren in einer Order-Sorted-Signature mit Σ𝐶 = (𝑆,⊏, 𝐹𝐶 ).
Definition 4. Abstrakte Sorte

Sei (𝑆,⊏, 𝐹 ) eine Order-Sorted-Signature. Eine Sorte 𝑠 ∈ 𝑆 heißt abstrakt gdw. es keine Konstruktoren
von 𝑠 gibt mit Ausnahme von Konstruktoren von 𝑠′ mit 𝑠′ ⊏+ 𝑠 .

Definition 5. Globale Untersorte „Undefiniert“
Sei (𝑆,⊏, 𝐹 ) eine Order-Sorted-Signature. Weiterhin sei ⊥ die globale Error-Untersorte mit:

(1) ⊥ = {𝑐⊥}
(2) 𝑐⊥ ist Konstruktor von ⊥
(3) ⊥ ⊏∗ 𝑠,∀𝑠 ∈ 𝑆
Notation: ⊥ = {𝑐⊥} wird auch als Undef={undef} formuliert.

Definition 6. Abbildung partieller Operationen auf totale Operationen
Sei (𝑆,⊏, 𝐹 ) eine Order-Sorted-Signature und 𝑝 𝑓𝑤,𝑠 ∈ 𝑃𝐹𝑤,𝑠 ⊆ 𝐹 mit 𝑤 = (𝑠1, ..., 𝑠𝑛) ∈ 𝑆∗, 𝑠 ∈ 𝑆 eine
partielle Operation, dann wird 𝑝𝑓𝑤,𝑠 wie folgt auf eine totale Operation 𝑡 𝑓𝑤,𝑠 abgebildet:

(1) (𝑥1, ..., 𝑥𝑛, 𝑥) ∈ 𝑝𝑓𝑤,𝑠 → (𝑥1, ..., 𝑥𝑛, 𝑥) ∈ 𝑡 𝑓𝑤,𝑠

(2) ∀(𝑥1, ..., 𝑥𝑛) ∈ 𝑤 :
(�𝑥 ∈ 𝑠 : (𝑥1, ..., 𝑥𝑛, 𝑥) ∈ 𝑝𝑓𝑤,𝑠

) → (𝑥1, ..., 𝑥𝑛, 𝑐⊥) ∈ 𝑡 𝑓𝑤,𝑠

Bemerkung: Im Folgenden werden Operationen 𝑡 𝑓𝑤,𝑠 mit (𝑥1, ..., 𝑥𝑛, 𝑐⊥) ∈ 𝑡 𝑓𝑤,𝑠 als partiell bezeichnet.

Definition 7. Striktheit partieller Operationen
Sei (𝑆,⊏, 𝐹 ) eine Order-Sorted-Signature und 𝑃𝐹 ⊆ 𝐹 partielle Operationen.

∀𝑛 ∈ N : ∀𝑠1, ..., 𝑠𝑛, 𝑠 ∈ 𝑆 : ∀𝑝𝑓𝑠1,...,𝑠𝑛,𝑠 ∈ 𝑃𝐹𝑠1,...,𝑠𝑛,𝑠 :
(𝑥1, ..., 𝑥𝑛, 𝑥) ∈ 𝑝𝑓𝑠1,...,𝑠𝑛,𝑠 → ((∃𝑖 ∈ {1, ..., 𝑛} : 𝑥𝑖 = 𝑐⊥) → 𝑥 = 𝑐⊥) (Striktheitsannahme)

Die Striktheitsannahme gilt, außer es werden explizit Ausnahmen dafür spezifiziert.

Beispiel 1. Order-Sorted-Algebra mit Beweis mittels Struktureller Induktion
sorts Prog, Decls, Stats, Node, OCC, Nat, Undef
subsorts Prog, Decls, Stats < Node ; Undef < Prog, Decls, Stats, OCC, Nat
constructors prog: Decls >< Stats -> Prog

noDecls: Decls
noStats: Stats
empty:OCC
dot: OCC >< Nat -> OCC
null: Nat
succ: Nat -> Nat
undef: Undef

operations occ: OCC >< Node -> Node
variables o:OCC, x:Node, d:Decls, s:Stats, n:Nat
axioms O1: occ(o,x) = prog(d,s) => occ(dot(o,null),x) = d

O2: occ(o,x) = prog(d,s) => occ(dot(o,succ(null)),x) = s
O3: occ(o,x) = prog(d,s) => occ(dot(o,succ(succ(n))),x) = undef
O4: occ(o,x) = noDecls => occ(dot(o,n),x) = undef
O5: occ(o,x) = noStats => occ(dot(o,n),x) = undef
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Lemma O0p: occ(empty,prog(d,s)) = prog(d,s)
Lemma O0d: occ(empty,noDecls) = noDecls
Lemma O0s: occ(empty,noStats) = noStats

Theorem occEmpty: forall x:Node : occ(empty,x) = x
proof by induction x
IB: show occ(empty,prog(d,s)) = prog(d,s) by lemma O0p
IB: show occ(empty,noDecls) = noDecls by lemma O0d
IB: show occ(empty,noStats) = noStats by lemma O0s
qed

Das Beispiel 1 modelliert einen kleinen Teil des abstrakten Syntaxbaums einer Programmierspra-
che und führt einen einfachen Beweis mittels struktureller Induktion.
Dabei sind zwei Sorten besonders: Node und Undef. Node wird als abstrakte Sorte von allen

Baumknoten des abstrakten Syntaxbaums eingeführt und hat deswegen keine eigenen Konstrukto-
ren. Undef mit einem einzigen Konstruktor undef wird als Untersorte von allen anderen Sorten
eingeführt und wird für die Darstellung partieller Operationen verwendet, wann immer diese nicht
definiert sind. Durch das Undef wird die partielle Operationen occ total.

Das Besondere an dem Beweis über der abstrakten Sorte Node ist, dass die strukturelle Induktion
über alle Konstruktoren der direkten Untersorten von Node iteriert.

Bemerkung 1.
Neben ⊥ als globale Error-Untersorte gibt es auch alternative Abbildungen partieller Operationen auf
totale Operationen:

(1) Domainspezifische Untersorte: Dabei hat eine Sorte 𝑠 eine Untersorte ⊥𝑠 ⊏ 𝑠 , sodass eine
partielle Operation mit der Sorte 𝑠 abgebildet werden kann auf eine totale Operation mit der
Sorte ⊥𝑠 [5, 11].
Beispiel dafür ist der Stack mit der Untersorte NonEmptyStack, sodass die pop Operation
einen nicht leeren Stack bekommt und damit total wird [5].
Das Problem bei dieser Abbildung ist, dass für jede Sorte eine spezielle Untersorte erforderlich
ist und es nicht klar ist ob eine solche Abbildung immer automatisiert gefunden werden kann.

(2) Error-Obersorte ⊤: Eine Sorte ⊤ mit 𝑠 ⊏∗ ⊤,∀𝑠 ∈ 𝑆 die einen Fehler darstellt [5].

Der Vorteil der Error-Untersorte ⊥ im Vergleich zur Error-Obersorte ⊤ besteht bei den Sortenan-
passungen: Tritt ein Fehler ein, so kann dieser als ⊥ an jede andere Sorte angepasst werden, sodass
keine Folgefehler ausgelöst werden. Als ⊤ können nur andere Sorten an den Fehler angepasst
werden, sodass viele Folgefehler entstehen können. Liegt beispielsweise ein Fehler im Else-Teil
einer bedingten Anweisung vor, so müsste bei der Error-Obersorte ⊤ auch der Then-Teil an ⊤
angepasst werden, sodass der Then-Teil fälschlicherweise einen Fehler darstellt, während mit der
Error-Untersorte ⊥ der Fehler an die Sorte des Then-Teils angepasst wird und keine Folgefehler
entstehen.

Weiterhin unterstützt die Error-Untersorte ⊥ auch domainspezifische Untersorten ⊥𝑠 , da ⊥ ⊏+

⊥𝑠 ,∀𝑠 ∈ 𝑆 , während es bei der Error-Obersorte ⊤ dabei ein Problem mit der Fehlerdarstellung gäbe,
da ⊥𝑠 ⊏ 𝑠 ⊏+ ⊤, sodass ⊥𝑠 an ⊤ angepasst werden müsste, wobei 𝑠 dazwischen liegt.

3 Abbildung von Untersorten
Eine Abbildung von Untersorten wurde bereits durch CASL [7] vorgestellt. In diesem Abschnitt
wird zuerst die Abbildung von Untersorten nach CASL vorgestellt und dann die Grenzen dieser
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Abbildung gezeigt. Dann wird eine Lösung für das Problem der Abbildung nach CASL vorgestellt
sowie Bedingungen für die Erfüllbarkeit dieser Abbildung geschlussfolgert.

Die Abbildung von Untersorten nach CASL ist wie folgt [7]
(1) Für jede Untersorte 𝑠 ⊏∗ 𝑠′ wird hinzugefügt

• totale Einbettungsoperation 𝑒𝑚𝑏𝑒𝑑𝑠,𝑠′
• partielle Projektionsoperation 𝑝𝑟𝑜 𝑗𝑠′,𝑠
• Zugehörigkeitsprädikat 𝑖𝑠𝑀𝑒𝑚𝑏𝑒𝑟𝑠′ , welches bestimmt ob ein Term 𝑡 von der Sorte 𝑠
ist.

(2) In Axiomen werden in atomaren Formeln, genauer in Gleichungen, die Einbettungsopera-
tionen eingesetzt.

Die Grenzen der Abbildung nach CASL bestehen darin, dass Konstruktoren nicht berücksichtigt
werden: CASL gibt die Operationen an, jedoch nicht ob welche davon Konstruktoren sein sollen.
Nimmt man an, dass keine der Einbettungs- oder Projektionsoperationen Konstruktoren sind,
treten folgende Probleme ein:
• Die Error-Untersorte ⊥ kann nicht als Untersorte dargestellt werden, denn die totale Einbet-
tungsoperation 𝑒𝑚𝑏𝑒𝑑⊥,𝑠′ muss einen Wert aus 𝑠′ als Standardwert auswählen. Dann wird
durch Einsetzen der Einbettungsoperation in den Axiomen ⊥ durch diesen Standardwert
ersetzt und damit wird ⊥ nicht umgesetzt.
• Abstrakte Sorten wie Node aus Beispiel 1 können nicht dargestellt werden, da sie keine
Konstruktoren haben.

Die Schlussfolgerung ist, dass Konstruktoren notwendig sind. Definition 8 stellt die Abbildung
von Untersorten auf MSA mit Konstruktoren vor.

Definition 8. Abbildung von Untersorten auf MSA mit Konstruktoren
Sei𝐴𝑂𝑆𝐴 eine Order-Sorted-Algebra mit der Signatur (𝑆,⊏, 𝐹 ), Prädikaten 𝑃 , Gleichungen 𝐸 und𝐴𝑀𝑆𝐴

eine Many-Sorted-Algebra mit der Signatur (𝑆 ′, 𝐹 ′), Prädikaten 𝑃 ′ und Gleichungen 𝐸′. Weiterhin sei
𝐹 = 𝐹𝐶 ⊎ 𝐹𝑂 wobei 𝐹𝐶 Konstruktoren und 𝐹𝑂 keine Konstruktoren sind, dann wird 𝐴𝑀𝑆𝐴 wie folgt aus
𝐴𝑂𝑆𝐴 erzeugt:

(1) Sorten: 𝑆 ′ = 𝑆
(2) Operationen: 𝐹 ′ = 𝐹 ′𝐶 ⊎ 𝐹 ′𝑂 mit

(a) Hinzufügen von Einbettungskonstruktoren:
𝐹 ′𝐶 = 𝐹𝐶 ∪ 𝐸𝑚𝑏𝑒𝑑 mit ∀𝑠, 𝑠′ ∈ 𝑆 : 𝑠 ⊏ 𝑠′ → 𝑒𝑚𝑏𝑒𝑑𝑠,𝑠′ ∈ 𝐸𝑚𝑏𝑒𝑑

(b) Hinzufügen partieller Projektionsoperationen: [7]
𝐹 ′𝑂 = 𝐹𝑂 ∪ 𝑃𝑟𝑜 𝑗 mit ∀𝑠, 𝑠′ ∈ 𝑆 : 𝑠 ⊏ 𝑠′ → 𝑝𝑟𝑜 𝑗𝑠′,𝑠 ∈ 𝑃𝑟𝑜 𝑗

(3) Hinzufügen von 𝑖𝑠𝑀𝑒𝑚𝑏𝑒𝑟 -Prädikaten: [7]
𝑃 ′ = 𝑃 ∪ 𝐼𝑠𝑀𝑒𝑚𝑏𝑒𝑟 mit ∀𝑠, 𝑠′ ∈ 𝑆 : 𝑠 ⊏ 𝑠′ → 𝑖𝑠𝑀𝑒𝑚𝑏𝑒𝑟𝑠𝑠′ ∈ 𝐼𝑠𝑀𝑒𝑚𝑏𝑒𝑟 , wobei 𝑖𝑠𝑀𝑒𝑚𝑏𝑒𝑟𝑠𝑠′
bestimmt ob ein Term 𝑡 von der Sorte 𝑠 ist.

(4) 𝑒𝑚𝑏𝑒𝑑𝑠,𝑤,𝑠′ mit𝑤 = 𝑠1, ..., 𝑠𝑛 ∈ 𝑆∗, 𝑠, 𝑠′ ∈ 𝑆 ist eine Komposition von Einbettungskonstruktoren
𝑒𝑚𝑏𝑒𝑑𝑠𝑛,𝑠′ ◦ ... ◦ 𝑒𝑚𝑏𝑒𝑑𝑠,𝑠1 , genannt Anpassungsfolge (engl. coercion sequence)

(5) Hinzufügen von Gleichungen: 𝐸′ = 𝐸𝐴𝑑𝑎𝑝𝑡 ∪ 𝐸𝑃𝑟𝑜 𝑗 ∪ 𝐸𝐼𝑠𝑀𝑒𝑚𝑏𝑒𝑟 ∪ 𝐸𝐶𝑜𝑒𝑟𝑐𝑒𝑆𝑒𝑞𝐴𝑞𝑢𝑖𝑣 mit
(a) 𝐸𝐴𝑑𝑎𝑝𝑡 sind mit Einbettungskonstruktoren angepasste Gleichungen aus 𝐸, sodass [5]

(i) Sei 𝑡𝑂𝑆𝐴
𝑠 := 𝑓𝑠1′ ,...,𝑠𝑛′ ,𝑠 (𝑡𝑂𝑆𝐴

𝑠1 , ..., 𝑡𝑂𝑆𝐴
𝑠𝑛 ) ein Term aus (𝑆,⊏, 𝐹 ), dann ist induktiv defi-

niert
𝑡𝑀𝑆𝐴
𝑠 := 𝑓𝑠1′ ,...,𝑠𝑛′ ,𝑠 (𝑒𝑚𝑏𝑒𝑑𝑠1,𝑤1,𝑠1′ (𝑡𝑀𝑆𝐴

𝑠1 ), ..., 𝑒𝑚𝑏𝑒𝑑𝑠𝑛,𝑤𝑛,𝑠𝑛′ (𝑡𝑀𝑆𝐴
𝑠𝑛 )) ein Term aus (𝑆 ′, 𝐹 ′).

(ii) ∀𝑡𝑂𝑆𝐴
𝑠 = 𝑡 ′𝑂𝑆𝐴

𝑠′ ∈ 𝐸 gilt:∃𝑠′′ : 𝑠′′ = 𝑠⊔𝑠′∧𝑒𝑚𝑏𝑒𝑑𝑠,𝑤,𝑠′′ (𝑡𝑀𝑆𝐴
𝑠 ) = 𝑒𝑚𝑏𝑒𝑑𝑠′,𝑤,𝑠′′ (𝑡 ′𝑀𝑆𝐴

𝑠′ ) ∈
𝐸𝐴𝑑𝑎𝑝𝑡

(b) ∀𝑝𝑟𝑜 𝑗𝑠′,𝑠 ∈ 𝑃𝑟𝑜 𝑗 :
(
𝑝𝑟𝑜 𝑗𝑠′,𝑠 ◦ 𝑒𝑚𝑏𝑒𝑑𝑠,𝑠′ = 𝑖𝑑

) ∈ 𝐸𝑃𝑟𝑜 𝑗
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(c) ∀𝑝𝑟𝑜 𝑗𝑠′,𝑠 ∈ 𝑃𝑟𝑜 𝑗, 𝑡 ∈ 𝑠, 𝑐 ∈ 𝐹 ′𝐶𝑠′
: 𝑐 (𝑡) ≠ 𝑒𝑚𝑏𝑒𝑑𝑠,𝑠′ (𝑡)

→ ∃𝑤 ∈ 𝑆∗ : (𝑝𝑟𝑜 𝑗𝑠′,𝑠 (𝑐 (𝑡)) = 𝑒𝑚𝑏𝑒𝑑⊥,𝑤,𝑠 (𝑐⊥)
) ∈ 𝐸𝑃𝑟𝑜 𝑗

(d) ∀𝑖𝑠𝑀𝑒𝑚𝑏𝑒𝑟𝑠𝑠′ ∈ 𝐼𝑠𝑀𝑒𝑚𝑏𝑒𝑟, 𝑡 ∈ 𝑠′ : (𝑖𝑠𝑀𝑒𝑚𝑏𝑒𝑟𝑠𝑠′ (𝑡) = (𝑝𝑟𝑜 𝑗𝑠′,𝑠 (𝑡) ≠ 𝑒𝑚𝑏𝑒𝑑⊥,𝑤,𝑠 (𝑐⊥))
) ∈

𝐸𝐼𝑠𝑀𝑒𝑚𝑏𝑒𝑟

(e) ∀𝑤1,𝑤2 ∈ 𝑆∗, 𝑠, 𝑠′ ∈ 𝑆 :
(
𝑒𝑚𝑏𝑒𝑑𝑠,𝑤1,𝑠′ = 𝑒𝑚𝑏𝑒𝑑𝑠,𝑤2,𝑠′

) ∈ 𝐸𝐶𝑜𝑒𝑟𝑐𝑒𝑆𝑒𝑞𝐴𝑞𝑢𝑖𝑣
(Äquivalenz von Anpassungsfolgen)

Definition 9. Projektionsfolge
Sei 𝐴 eine Many-Sorted-Algebra konstruiert entsprechend Definition 8. Dann ist 𝑝𝑟𝑜 𝑗𝑠,𝑤,𝑠′ mit 𝑤 =
𝑠1, ..., 𝑠𝑛 ∈ 𝑆∗, 𝑠, 𝑠′ ∈ 𝑆 eine Komposition von Projektionsoperationen 𝑝𝑟𝑜 𝑗𝑠𝑛,𝑠′ ◦ ... ◦ 𝑝𝑟𝑜 𝑗𝑠,𝑠1 , genannt
Projektionsfolge.

Bemerkung 2. Das Konzept der Anpassungsfolgen (coercion sequence) kommt aus dem Übersetzer-
bau [9]. Für Anpassungsfolgen mit 𝑤 ∈ 𝑆0 ist 𝑒𝑚𝑏𝑒𝑑𝑠,𝑤,𝑠′ = 𝑒𝑚𝑏𝑒𝑑𝑠,𝑠′ und 𝑒𝑚𝑏𝑒𝑑𝑠,𝑤,𝑠 = 𝑖𝑑 . Analog
bei Projektionsfolgen.

Bemerkung 3. Die Einbettungskonstruktoren und Projektionsoperationen basieren auf der Theorie
der Retrakte [3, 4]. Dabei ist der Einbettungskonstruktor die Inklusion und die Projektionsoperation
die Retraktion. Entsprechend der Theorie der Retrakte gilt die Eigenschaft aus Satz 1, sowie gelten die
Eigenschaften aus Definition 8.5b und Satz 1 auch bei Folgen von Einbettungen bzw. Projektionen, vgl.
Satz 2.

Satz 1. Einbettung als bedingte Linksinverse der Projektion [4]

(1) 𝑡 = 𝑒𝑚𝑏𝑒𝑑𝑠,𝑠′ → 𝑒𝑚𝑏𝑒𝑑𝑠,𝑠′ ◦ 𝑝𝑟𝑜 𝑗𝑠′,𝑠 (𝑡) = 𝑖𝑑 (𝑡)
(2) 𝑡 ≠ 𝑒𝑚𝑏𝑒𝑑𝑠,𝑠′ → 𝑒𝑚𝑏𝑒𝑑𝑠,𝑠′ ◦ 𝑝𝑟𝑜 𝑗𝑠′,𝑠 = 𝑒𝑚𝑏𝑒𝑑⊥,𝑤,𝑠′

Satz 2. Axiome der Projektion erweitert auf Projektionsfolgen [3]:

(1) 𝑝𝑟𝑜 𝑗𝑠′,𝑤−1,𝑠 ◦ 𝑒𝑚𝑏𝑒𝑑𝑠,𝑤,𝑠′ = 𝑖𝑑
(2) 𝑡 ≠ 𝑒𝑚𝑏𝑒𝑑𝑠,𝑤,𝑠′ (𝑡) → 𝑝𝑟𝑜 𝑗𝑠′,𝑤−1,𝑠 (𝑡) = 𝑒𝑚𝑏𝑒𝑑⊥,𝑤′,𝑠 (𝑐⊥)
Satz 3. Äquivalenz von Projektionsfolgen: ∀𝑤1,𝑤2 ∈ 𝑆∗, 𝑠, 𝑠′ ∈ 𝑆 : 𝑝𝑟𝑜 𝑗𝑠,𝑤1,𝑠′ = 𝑝𝑟𝑜 𝑗𝑠,𝑤2,𝑠′

Beweis 1. Beweis von Satz 3.
Zu zeigen: ∀𝑤1,𝑤2 ∈ 𝑆∗, 𝑠, 𝑠′ ∈ 𝑆 : 𝑝𝑟𝑜 𝑗𝑠,𝑤1,𝑠′ (𝑡) = 𝑝𝑟𝑜 𝑗𝑠,𝑤2,𝑠′ (𝑡)
Fall 1. 𝑡 = 𝑒𝑚𝑏𝑒𝑑𝑠′,𝑤−11 ,𝑠 (𝑡 ′)

𝑝𝑟𝑜 𝑗𝑠,𝑤1,𝑠′ (𝑡) = 𝑝𝑟𝑜 𝑗𝑠,𝑤2,𝑠′ (𝑡) Annahme
↔𝑝𝑟𝑜 𝑗𝑠,𝑤1,𝑠′ ◦ 𝑒𝑚𝑏𝑒𝑑𝑠′,𝑤−11 ,𝑠 (𝑡 ′) = 𝑝𝑟𝑜 𝑗𝑠,𝑤2,𝑠′ ◦ 𝑒𝑚𝑏𝑒𝑑𝑠′,𝑤−11 ,𝑠 (𝑡 ′) Satz 2.1
↔𝑡 ′ = 𝑝𝑟𝑜 𝑗𝑠,𝑤2,𝑠′ ◦ 𝑒𝑚𝑏𝑒𝑑𝑠′,𝑤−11 ,𝑠 (𝑡 ′) Definition 8.5e
↔𝑡 ′ = 𝑝𝑟𝑜 𝑗𝑠,𝑤2,𝑠′ ◦ 𝑒𝑚𝑏𝑒𝑑𝑠′,𝑤−12 ,𝑠 (𝑡 ′) Satz 2.1
↔𝑡 ′ = 𝑡 ′ Reflexivität (=)
Fall 2. 𝑡 ≠ 𝑒𝑚𝑏𝑒𝑑𝑠′,𝑤−11 ,𝑠 (𝑡 ′)
Umformung Annahme:
𝑡 ≠ 𝑒𝑚𝑏𝑒𝑑𝑠′,𝑤−11 ,𝑠 (𝑡 ′) Definition 8.5e
↔𝑡 ≠ 𝑒𝑚𝑏𝑒𝑑𝑠′,𝑤−12 ,𝑠 (𝑡 ′)
Beweis:

𝑝𝑟𝑜 𝑗𝑠,𝑤1,𝑠′ (𝑡) = 𝑝𝑟𝑜 𝑗𝑠,𝑤2,𝑠′ (𝑡) Satz 2.2, Annahme
↔𝑒𝑚𝑏𝑒𝑑⊥,𝑤′,𝑠′ = 𝑒𝑚𝑏𝑒𝑑⊥,𝑤′′,𝑠′ Definition 8.5e
↔𝑒𝑚𝑏𝑒𝑑⊥,𝑤′,𝑠′ = 𝑒𝑚𝑏𝑒𝑑⊥,𝑤′,𝑠′ Reflexivität (=)
q.e.d.
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Fig. 2. Untersortenverband

Fig. 3. Untersortenverband für Beispiel 1

Bemerkung 4. Untersortenhalbverband
Mit Untersorten können Gleichungen 𝑡𝑠 = 𝑡 ′𝑠′ mit Termen 𝑡𝑠 , 𝑡 ′𝑠′ und 𝑠 ⊏ 𝑠′ mit 𝑠, 𝑠′ ∈ 𝑆 existieren [5].
Entsprechend kann 𝑡𝑠 = 𝑡 ′′𝑠′′ mit 𝑠 ⊏ 𝑠′′ existieren. Aus der Transitivität für (=) folgt 𝑡 ′𝑠′ = 𝑡 ′′𝑠′′ , wobei
weder 𝑠′ ⊏ 𝑠′′ noch 𝑠′′ ⊏ 𝑠′ definiert wurde. Mit 𝑠′ a 𝑠′′ ∧ 𝑠′′ a 𝑠′ wäre 𝑡 ′𝑠′ = 𝑡 ′′𝑠′′ laut OSA [5] erlaubt,
jedoch funktioniert die Abbildungsvorschrift auf MSA nicht, da 𝑒𝑚𝑏𝑒𝑑 : 𝑠′ → 𝑠′′ bzw. 𝑒𝑚𝑏𝑒𝑑 : 𝑠′′ → 𝑠′

nicht existiert. Damit die Abbildung auf MSA funktioniert, muss also ein 𝑠′′′ existieren mit 𝑠′ ⊏ 𝑠′′′

und 𝑠′′ ⊏ 𝑠′′′, vgl. Abbildung 2. Allgemein betrachtet muss die Untersortenrelation ⊏ ein nach oben
abgeschlossener Halbverband sein [5].

Satz 4. Untersortenverband
Aus dem nach oben abgeschlossenen Halbverband für die Untersortenrelation, und der Abbildung
partieller Operationen mit der Error-Untersorte ⊥, die (⊏) nach unten abschließt, folgt die Verbandsei-
genschaft für die Untersortenrelation (⊏).

Die Verbandseigenschaft für die Untersortenrelation (⊏) ist weiterhin für die Eindeutigkeit der
Projektionsoperationen notwendig.

Beispiel 2. Untersortenverband für Beispiel 1
Abbildung 3 zeigt den Untersortenverband für Beispiel 1 als Hassediagramm.

Im Folgenden wird die Abbildung von Untersorten inklusive der durch die Untersorten umgesetz-
ten partiellen Operationen an einem Beispiel dargestellt. Dazu wird das Beispiel 1 zur Order-Sorted-
Algebra mit der beschriebenen Abbildung auf MSA abgebildet. Die dazugehörige Modellierung als
MSA wird in Beispiel 3 dargestellt.

Beispiel 3. Abbildung von Beispiel 1 als MSA
sorts Prog, Decls, Stats, Node, OCC, Nat, Undef, AnySort
constructors

embedUndefToProg: Undef -> Prog
embedUndefToDecls: Undef -> Decls
embedUndefToStats: Undef -> Stats
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embedProgToNode: Prog -> Node
embedDeclsToNode: Decls -> Node
embedStatsToNode: Stats -> Node
embedUndefToOcc: Undef -> OCC
embedUndefToNat: Undef -> Nat
embedNodeToAnySort: Node -> AnySort
embedOCCToAnySort: OCC -> AnySort
embedNatToAnySort: Nat -> AnySort

operations
projAnySortToNode: AnySort -> Node
projAnySortToOCC: AnySort -> OCC
projAnySortToNat: AnySort -> Nat
projNodeToProg: Node -> Prog
projNodeToDecls: Node -> Decls
projNodeToStats: Node -> Stats
projNatToUndef: Nat -> Undef
projOCCToUndef: OCC -> Undef
projProgToUndef: Prog -> Undef
projDeclsToUndef: Decls -> Undef
projStatsToUndef: Stats -> Undef

variables o:OCC, x:Node, d:Decls, s:Stats, p:Prog, n: Nat
axioms
O1: occ(o,x) = embedProgToNode(prog(d,s))

=> occ(dot(o,null),x) = embedDeclsToNode(d)
O2: occ(o,x) = embedProgToNode(prog(d,s))

=> occ(dot(o,succ(null)),x) = embedStatsToNode(s)
O3: occ(o,x) = embedProgToNode(prog(d,s))

=> occ(dot(o,succ(succ(n)),x) = embedProgToNode(embedUndefToProg(undef))
O4: occ(o,x) = embedDeclsToNode(noDecls) => occ(dot(o,n),x)

= embedProgToNode(embedUndefToProg(undef))
O5: occ(o,x) = embedStatsToNode(noStats) => occ(dot(o,n),x)

= embedProgToNode(embedUndefToProg(undef))
O6: occ(embedUndefToOcc(undef),x) = embedProgToNode(embedUndefToProg(undef))
O7: occ(o,embedProgToNode(embedUndefToProg(undef)))

= embedProgToNode(embedUndefToProg(undef))
P1: projNodeToProg(embedProgToNode(p)) = p
P2: projNodeToProg(embedDeclsToNode(d)) = embedUndefToProg(undef)
P3: projNodeToProg(embedStatsToNode(s)) = embedUndefToProg(undef)
U0: embedProgToNode(embedUndefToProg(undef))

= embedDeclsToNode(embedUndefToDecls(undef))
U1: embedDeclsToNode(embedUndefToDecls(undef))

= embedStatsToNode(embedUndefToStats(undef))

In Beispiel 3 kommen durch die Abbildung bis zu zwei neue Sorten dazu: Undef (falls noch
nicht in der OSA spezifiziert) und AnySort, die den Untersortenverband abschließen, entsprechend
Beispiel 2.

106



Umsetzbare Abbildung von Untersorten und partiellen Operationen auf Many-Sorted-Algebra mit Konstruktoren 9

Neben den bisherigen Konstruktoren aus Beispiel 1 (hier übersichtlichkeitshalber weggelassen)
kommen Anpassungskonstruktoren für jede direkte Untersortenbeziehung hinzu. Analog dazu die
Projektionsoperationen.
Die Axiome O1 bis O5 aus Beispiel 1 werden direkt übersetzt. Da die Operation occ partiell ist,

kommen durch die Striktheitsannahme weitere Axiome (O6 und O7) hinzu. Weiterhin kommen
neue Axiome für die Projektionsoperationen hinzu. In Beispiel 3 wurden diese exemplarisch für
projNodeToProg dargestellt.

Bemerkbar ist hier auch, dass die Darstellung der Error-Untersorte Undef für Node nicht eindeutig
ist. Jede dieser Darstellungen ist dann gleich mit jeder anderen. Das wird mit den Axiomen U0 und
U1 umgesetzt.

Beispiel 4. Beweis aus Beispiel 1 in MSA

Lemma O0p: occ(empty,embedProgToNode(prog(d,s))) = embedProgToNode(prog(d,s))
Lemma O0d: occ(empty,embedDeclsToNode(noDecls)) = embedDeclsToNode(noDecls)
Lemma O0s: occ(empty,embedStatsToNode(noStats)) = embedStatsToNode(noStats)

Theorem occEmpty: forall x:Node : occ(empty,x) = x
proof by induction x

IB: show occ(empty,embedProgToNode(p)) = embedProgToNode(p) by induction p
IB: show occ(empty,embedProgToNode(prog(d,s))) = embedProgToNode(prog(d,s))

by lemma O0p
IB: show occ(empty,embedDeclsToNode(d)) = embedDeclsToNode(d) by induction d
IB: show occ(empty,embedDeclsToNode(noDecls)) = embedDeclsToNode(noDecls)

by lemma O0d
IB: show occ(empty,embedStatsToNode(s)) = embedStatsToNode(s) by induction s
IB: show occ(empty,embedStatsToNode(noStats)) = embedStatsToNode(noStats)

by lemma O0s
qed

Beispiel 4 zeigt den Beweis aus Beispiel 1 in MSA. Bei der Induktion über x wird somit über
alle Einbettungskonstruktoren der Sorte Node iteriert. Um das selbe zu erreichen wie in Beispiel 1
muss eine verschachtelte Induktion durchgeführt werden, sodass die Konstruktoren innerhalb der
Einbettungskonstruktorterme sichtbar werden, um so die selben Lemmata anwenden zu können.

4 Verwandte Arbeiten
Verwandte Arbeiten sind CASL [7] und Order-Sorted-Algebra (OSA) [5]. Beide stellen eine Abbil-
dung von Untersorten auf Many-Sorted-Algebra (MSA) vor. OSA diskutiert auch Abbildungen von
partiellen Operationen.

CASL stellt eine Abbildung von Untersorten auf MSA entsprechend Abschnitt ?? vor. Dabei ist
das Problem, dass durch die Anpassungsoperationen Terme von Untersorten eliminiert werden,
sodass die Abbildung nicht umsetzbar ist.

OSA stellt zwei Möglichkeiten für partielle Operationen dar: eine Domainspezifische Untersor-
te wie beispielsweise nicht-leerer-Stack oder eine einheitliche Error-Obersorte. Die Möglichkeit
einer einheitlichen Error-Untersorte wird nicht erwähnt. OSA stellt ebenso wie CASL Anpas-
sungsoperationen vor und schlagen zusätzlich vor, dass die Sorten einer Gleichung in der selben
Zusammenhangskomponente bezüglich der Untersortenrelation liegen. Das reicht jedoch bei
Mehrfachvererbung nicht aus. Wir zeigen, dass ein Verband erforderlich ist.

Es gibt weitere verwandte Arbeiten, die Erweiterungen mit Untersorten durchführen:
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In [6] wird CASL um Logik höherer Ordnung (HOL) erweitert, wobei auch Untersorten und
partielle Operationen berücksichtigt werden. Jedoch bleibt das bisherige Problem von CASL mit
Untersorten bestehen.

In [1] wird der Calculus-of-Inductive-Constructions (CIC), welcher eine Basis für das Typsystem
von Coq [2] darstellt, um Untersorten auf Konstruktoren erweitert. Damit wird also das Überladen
von Konstruktoren ermöglicht, jedoch wird keine Abbildung von Untersorten auf MSA beschrieben.
Weiterhin ist diese Erweiterung für CIC nicht für Coq verfügbar.

5 Zusammenfassung
Abbildung von Untersorten auf Many-Sorted-Algebra (MSA) ist eine Umsetzungsmöglichkeit von
Untersorten.

Jedoch waren die bisherigen Abbildungen, die von Common-Algebraic-Specification-Language
(CASL) und Order-Sorted-Algebra (OSA) vorgestellt wurden nicht ausreichend für eine praktische
Umsetzung, denn durch die Anpassungsoperationen verschwinden die Terme von Untersorten.

Durch Spezialisierung der Anpassungsoperationen zu Konstruktoren werden Terme von Unter-
sorten auch zu Termen Ihrer Obersorte, bei Verwendung des Anpassungskonstruktors, sodass die
Umsetzung der Abbildung von Untersorten auf MSA realisierbar wird.

Damit können Untersorten auch mit Sprachen umgesetzt werden, die nur eine MSA unterstützen,
aber keine OSA, wie beispielsweise funktionale Programmiersprachen wie Haskell oder Coq.
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Enhancing Security and Robustness of Cyber-physical
Systems using the Lemming Runtime System
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Cyber-physical systems (CPSs) integrate computational and physical capabilities. Such systems do not only
require functional correctness, but must also adhere to non-functional properties such as energy, time, security,
and robustness (ETSR). Deploying CPSs on parallel and heterogeneous computing platforms while meeting
the ETSR constraints and objectives introduces complex challenges, such as solving scheduling and mapping
problems. We present our novel runtime system Lemming designed to simplify the deployment of CPS
applications on parallel and heterogeneous hardware. Lemming adopts the exogenous coordination model
TeamPlay and radically separates coordination concerns from application logic: Applications are organized as
directed acyclic graphs (DAGs) of tasks that implement application-specific computations. Edges connect tasks
and define timing dependencies and stream-based data exchange. Lemming serves as a toolbox from which
the user can choose and configure features. Therefore, Lemming can be used for a wide range of applications.
In this paper, we highlight Lemming’s features for enhancing security and robustness using process-level and
Linux user-based task isolation.

1 Introduction
Cyber-physical systems (CPSs) are computer systems that integrate computational and physical
capabilities [3]. The system receives input from the physical world through sensors. It performs
computations and controls the actuators which serve as interfaces to the physical world. CPSs are
prevalent with applications ranging from medical devices to aerospace systems [13, 10].

D Energy

Â Time Security �

Robustnessè

Fig. 1. Non-functional properties and
their interdependence

For CPSs non-functional properties such as energy, time,
security, and robustness (ETSR properties), shown in Fig-
ure 1, are as important as functional correctness [2]. A
battery-powered CPS must operate in an energy efficient
manner [8, 6]. Furthermore, a CPS must react to sensor
input with actuator output within a certain time frame and
therefore has real-time constraints [14]. The security of
a CPS is important as a successful cyber attack can have
severe consequences [7, 9]. Likewise, robustness against
hardware and software faults is crucial [12, 11].
The non-functional properties influence each other, as

emphasized by the arrows in Figure 1. For example, when
using dynamic voltage and frequency scaling (DVFS) [16,
4], the CPS can significantly reduce energy consumption.
This often comes at the cost of increased computation time. Another example is the usage of
n-modular redundancy to increase the fault-tolerance of a CPS at the cost of higher energy con-
sumption as the same computation is performed multiple times. If enough computing units are
available at that time, replication can be done in parallel. Otherwise, redundant execution requires
more computation time.

Modern computing systems are parallel and heterogeneous and integrate multiple CPUs, GPUs,
and specialized computing units. Besides meeting ETSR constraints, CPSs must also achieve various
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objectives, such as minimizing energy consumption [14]. Deciding which computing unit to use
and when to execute a job in order to meet these objectives presents a challenging problem.
The TeamPlay coordination model [14] aims to address these challenges by separating coor-

dination concerns from application logic. This separation simplifies the development process, as
developers can focus on writing application-specific code while TeamPlay’s compiler and runtime
system handle coordination, mapping, and scheduling.
The TeamPlay’s existing runtime system YASMIN [5] focuses on meeting deadlines and on

optimizing for energy consumption, whereas security and robustness are of less importance. For
instance YASMIN runs the complete CPS in a single process and models multiple cores via kernel
threads.
In contrast, our novel runtime system Lemming [15] additionally focuses on security and ro-

bustness. Lemming improves the security of applications by building trust zones and therefore
separating confidential from non-confidential computations. Lemming uses process isolation of
computations to enhance the robustness of the system. A crash in one computation does not crash
the entire CPS application. Lemming is implemented as a library for Linux and acts as a middleware
between the application and the operating system. Also, Lemming serves as a toolbox from which
the user can select and configure the runtime system’s features. This enables users, among other
things, to perform application-specific weighting of ETSR constraints and objectives. In a nutshell,
Lemming facilitates the deployment of CPS applications on parallel and heterogeneous computing
platforms and considers both ETSR constraints and application objectives.
The rest of the paper is organized as follows: In Section 2, we present Lemming’s used task

model. In Section 3, we take a look at Lemming’s architecture and especially how our runtime
system improves the security and robustness of CPSs. Finally, in Section 4 we draw conclusions.

2 Task model
TeamPlay [14] is an exogenous coordination approach because it separates coordination concerns
from computation code. TeamPlay organizes applications as directed acyclic graphs (DAGs). Vertices
implement application-specific code and are called tasks. Edges define timing dependencies and
stream-based data-exchange between tasks and are called channels. Tasks have typed inports and
outports. In more detail, a channel enables task communication by connecting a task’s outport
with another task’s inport. A single data item transmitted through channels is called token.

Task 1

Â 20ms

0

1

Task 20 0

Task 30 0

Task 4
0

1

Fig. 2. A TeamPlay DAG with four tasks

A source task is a special task that has no
inports and can be used as an interface to
one or multiple sensors. In the same way, a
sink task is a task with no outports and can
be used as an interface to one or multiple ac-
tuators. A task is stateless, but a state can be
modeled using short-circuit channels. These
are channels which connect an outport with
an inport of the same task. The execution of
a DAG is periodic and must be completed before a deadline [14].
Each task has a worst-case execution time and a worst-case energy consumption on a specific

platform. These can be measured using static analysis or profiling [1, 17]. TeamPlay supports multi-
version tasks, which permit multiple implementations per task with different ETSR properties.
For example, a task that performs asymmetric RSA encryption can have multiple versions with
different security levels by using different key sizes. The higher the security, the more computation
time is needed, and the higher the energy consumption. If the objective is to reduce the energy
consumption of the CPS, Lemming will prefer task versions with a lower security level.
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TeamPlay specification Lemming API calls Executable

Plugins

liblemming.so

TeamPlay
compiler Compile

Fig. 3. Application development using TeamPlay

Figure 2 shows an example TeamPlay DAG. Task 1 is a source task and acts as a sensor. After
execution of Task 1, Task 2, and Task 3 are executed. As soon as Task 2 and Task 3 finish execution,
Task 4 executes and acts as an actuator. As indicated by the clock symbol, the DAG is executed
periodically every 20ms.

3 Lemming
Lemming is designed as a toolbox for CPS applications from which the user can choose and
configure features. In this section, we first describe Lemming’s architecture. After that, we focus on
how Lemming enhances security and robustness through isolation mechanisms. Finally, we show
how an application is implemented using the Lemming API.

Figure 3 illustrates the workflow for developing CPS applications using TeamPlay and Lemming.
First, the user specifies the application using the TeamPlay coordination language. It defines
the application’s DAGs and the ETSR properties. The specification is then compiled into a C
program containing a sequence of Lemming API calls to configure the runtime system. To produce
the final executable, the C program is compiled and linked with the Lemming library. The task
implementation is done in so-called plugins. These are loaded during the startup of the runtime
system.

3.1 Architecture
Lemming has several components that we illustrate in Figure 4.

• Controller: The controller is the central component of Lemming. The controller creates
a new process for each subcontroller. Furthermore, it creates a UNIX socket and shared
memory for communication between the runtime system’s components.
• Subcontrollers: The subcontrollers serve as intermediaries between the controller and the

tasks. The subcontrollers each control a disjoint group of tasks and a disjoint subset of the
system’s computing units and orchestrate the task execution on these computing units. Each
subcontroller spawns a worker for each computing unit. Additionally, the subcontroller
spawns a process or thread for each task.
• Workers: The workers each control a single computing unit and orchestrate the task
execution on it.
• Tasks: Tasks serve as interface between user code and the runtime system. Tasks perform
the task communication and execute the plugins.
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Fig. 4. Lemming architecture

• Plugins: The user assignes a plugin for each task. The plugins implements the user code.
The user code reads from its task’s inports, performs computations, and writes the result to
its task’s outport.
• Channels: Each channel connects a task’s outport with another task’s inport.

Figure 4 shows Lemming’s configuration for the DAG in Figure 2 where Task 1 and Task 4 are
controlled by Subcontroller 1 and Task 2 and Task 3 by Subcontroller 2.

3.2 Task scheduling
In addition to periodically executed DAGs, Lemming also supports periodic, aperiodic, and sporadic
tasks. Furthermore, Lemming offers three task scheduling classes: offline scheduling, global online
scheduling, and partitioned online scheduling. Task scheduling is done non-preemptively. Task
migration is allowed when offline or global online scheduling is used.
Offline scheduling is shown in Figure 5a. The user supplies a precomputed schedule table that

defines the task release times and the target computing unit. Each worker and therefore computing
unit has one LTQ (Local task queue) in which the runtime system inserts the tasks from the
schedule table. When the user chooses online scheduling, scheduling decisions are performed
during runtime. In the case of global online scheduling, Lemming uses one GTQ (Global task queue)
for each subcontroller, as shown in Figure 5b. Scheduling is done using global earliest deadline first
(EDF), which means that every task can be scheduled on every computing unit of its subcontroller.
When partitioned online scheduling is used, each task is pinned to a computing unit. Lemming
uses one LTQ for each worker, as shown in Figure 5c. Scheduling is done using EDF. For global and
partitioned online scheduling, a schedulability analysis must be performed beforehand to ensure
that the tasks are schedulable on the target system.

3.3 Task isolation
Lemming supports two task isolation mechanisms: The first mechanism aims to increase the
robustness of the CPS by allowing the user to isolate tasks by running them in separate processes.
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Fig. 5. Task scheduling classes

The second mechanism aims to increase the security of the CPS by placing tasks in different trust
zones.

3.3.1 Robustness isolation. YASMIN runs all tasks in one single process [5]. The tasks therefore
share the same address space. A crash of one task leads to the crash of the entire runtime system.
Lemming improves robustness by offering a feature that isolates tasks in separate processes. It can
be activated for each individual task. Therefore, the isolated tasks run in its own address space and
a fault in one task does not affect the others. Communication between tasks is done via shared
memory.

3.3.2 Security isolation. Lemming offers security isolation by building trust zones of tasks. Our
security model offers isolation between tasks of different trust zones. Lemming achieves this by
starting one subcontroller for each trust zone under different Linux users. If an attack successfully
exploits a security vulnerability in one task, any potential harm is limited to the Linux user of the
task’s subcontroller. In the worst case, the attacker can read and manipulate data from all tasks in
this trust zone, but the attacker does not have access to data from other trust zones. The security
feature can be used, for example, to run tasks exposed to the physical environment in one trust
zone. Confidential tasks, such as those that perform encryption and, therefore, store secret keys,
can be run in another trust zone. To enable tasks from different trust zones to communicate with
each other, the controller sets up shared memory for each so-called inter-subcontroller connection.
The shared memory contains a ring buffer, which stores the tokens with additional information
such as source task and port, and destination task and port. The shared memory must be accessible
from both subcontrollers that run under different Linux users. Therefore, both Linux users must
be assigned the same Linux group in advance. Lemming gives the Linux group read and write
permissions for the shared memory. Figure 6 shows such inter-subcontroller connections for the
application from Figure 4.

3.4 Lemming API usage
Figure 7a shows an example of how a task is configured using the Lemming API. The code specifies
a single task by setting the task’s attributes. This includes the task name, the path to the plugin
binary, periodic scheduling, the period, the worst-case execution time (WCET), and the number of
inports and outports. Furthermore, with the function lem_task_attr_set_process the robustness
isolation is activated.

Figure 7b shows the implementation of a plugin which performs a string reverse. The compiled
plugin binary must define a function called plugin_run, which is called by the runtime system for
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1 lem_task_attr_init(&task_attr);
2 lem_task_attr_set_name(&task_attr, "Task 1");
3 lem_task_attr_set_plugin_path(&task_attr,

"libplugin1.so");↩→
4 lem_task_attr_set_rule(&task_attr,

LEM_TASK_RULE_PERIODIC);↩→
5 lem_task_attr_set_period(&task_attr, ms(20));
6 lem_task_attr_set_wcet(&task_attr, ms(1));
7 lem_task_attr_set_inport_count(&task_attr, 0);
8 lem_task_attr_set_outport_count(&task_attr, 2);
9 lem_task_attr_set_process(&task_attr, true);

(a) Task configuration using the Lemming API

1 void plugin_run(struct lem_plugin_context *pctx) {
2 struct type *in =
3 (struct type *)lem_task_get(pctx->task, 0);
4 struct type *out =
5 (struct type *)lem_task_put(pctx->task, 0);
6
7 char *in_str = in->str;
8 char *out_str = out->str;
9
10 size_t length = strlen(in_str);
11 for (size_t i = 0; i < length; i++) {
12 out_str[i] = in_str[length - 1 - i];
13 }
14 out_str[length] = '\0';
15 }

(b) Plugin performing a string reverse

each task execution. The plugin reads from a task’s inport by calling the function lem_task_get and
specifying the ports index. In the same way, the plugin writes to an outport using lem_task_put.

4 Conclusion
In this paper, we introduced Lemming, our runtime system designed for cyber-physical systems on
parallel and heterogeneous computing platforms. Lemming addresses the challenges of deploying
CPS applications, including real-time scheduling, task mapping, inter-task communication, and
meeting energy, time, security, and robustness (ETSR) constraints and objectives. By separating
coordination concerns from application programming, Lemming simplifies the development process:
Users only need to specify the application and provide plugins, while Lemming handles scheduling,
mapping, and communication. Therefore, Lemming increases confidence in system correctness
and lowers the bar for system engineers, enabling them to focus on application logic rather than
low-level coordination. As a highly configurable toolbox, Lemming allows users to select and
combine features tailored to their specific needs, making it suitable for a wide range of CPS
applications. In this paper, we highlighted Lemming’s features to enhance security and robustness
using process-level and Linux user-based task isolation.

For future work, we plan to improve the security and robustness mechanisms. For example, we
plan to implement security isolation through containerization of tasks. This has the advantage of
requiring less setup, such as configuring Linux users and groups.
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A Brief Comparison of Module Systems in SML and Java
JULIAN SCHMIDT, Baden-Wuerttemberg Cooperative State University, Germany

Since its release, SML has inspired many functional programming languages—such as Haskell, OCaml or
F#—with features like type inference, algebraic data types (ADTs) and higher order functions. Over the past
decades, many of these features have also been—at least partially—adopted to object-oriented languages, such
as Java. Another powerful feature of SML is its module system. However, this aspect of SML has not been
fully embraced in OOP languages, which typically rely on classes and interfaces to group related code. Java
has introduced a module system in Version 9, called the JPMS. This document gives a small introduction to
the Java and SML module systems and briefly compares the two languages with regards to their abstraction
capabilities.

1 SML’s Module System
Standard ML’s (SML’s) module system is infamous among functional programming languages. It
encourages modularization of cohesive code into modules and therefore promotes code reuse. The
module system of SML is distinct from the core language [3] and consists of the following three
concepts:
• Structures
• Signatures
• Functors

In the following sections, an overview of these concepts is provided.

1.1 Structures
A SML structure packages related elements such as functions and values into a module. That means
multiple related elements are combined into a single container.
s t ruc ture Stack =

s t ruc t
exception E;

val empty = [];

fun push(q,x) = ...

fun peek(x::q) = ...

fun pop(x::q) = ...

fun size(x::xs) = ...

end;
Listing 1. An example stack structure in SML

Listing 1 shows an example of a Stack structure implemented using a list. As the implementations
of the functions are mostly straigtforward and add little to the discussion, they are omitted for
brevity in this and the following examples. In SML, the struct - end block is used to define a
structure [6][p. 60]. In between this block is the actual definition of exceptions, values and functions
contained in the structure. As the stack is implemented based on a list, we denote the empty stack
to be the empty list and implement the common stack methods by pattern matching on the builtin
list data type. Notice that we don’t need to provide any type information, as SML can infer all types
during compile time. This block is then assigned to a structure named Stack.
The structure can then be used in the REPL as follows:
Author’s Contact Information: Julian Schmidt, Baden-Wuerttemberg Cooperative State University, Horb, Germany, j.
schmidt@hb.dhbw-stuttgart.de.
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- val s = Stack.empty;;

val s = [] : 'a list

- val s1 = Stack.push(s, 42);;

val s1 = [42] : int list

- Stack.peek(s1);;

val it = 42 : int

First Stack.empty is assigned to a new variable s. This assigns an empty list of arbitrary elements
to the variable, as this is how we defined the empty value in Listing 1. Next the value 42 is pushed
onto the empty Stack. At this point it is evident, that the list’s elements need to be of type int,
which is also returned by the Read–eval–print loop (REPL). Lastly we use the peek function to
determine the top element of the stack, which the REPL correctly evaluates to 42. As we didn’t
assign the result to a new variable, the REPL automatically assigned the value to the variable it.
One caveat of this approach is, that the internal data type of the stack is not opaque. That is, the list
type is exposed to the outside and can be used with the stack functions directly, as the following
example shows:
- Stack.push([2,3], 1);;

val it = [1,2,3] : int list

We will come back to this in the next section, to show how we can hide the internal data type of a
structure.

1.2 Signatures
Signatures define a contract, which each structure that matches the signature, must satisfy. That is,
a signature abstractly defines specifications, a structure must implement.
Listing 2 shows an example signature for the stack module.
s ignature STACK =

s ig
type 'a t;

exception E;

val empty : 'a t;

val push : 'a t * 'a -> 'a t;

val peek : 'a t -> 'a;

val pop : 'a t -> 'a t;

val size : 'a t -> int;

end;
Listing 2. An example stack signature in SML

At the beginning, we denote a new abstract type ’a t, which we use throughout the function
signatures. In SML ’a is a type variable, i.e. it stands for an arbitrary type [6][p. 65]. For now t
is an abstract type, which means we leave it to the structure to define the type. This also means
multiple structures which match the signature, can have different implementations of the type. For
the stack functions, we omitted all implementation details of the functions and instead provided
the types. In SML, the asterisk (*) denotes the Cartesian product, which represents tuples. So A *
B is the type of the tuple (a: A, b: B)
Since the structure in Listing 1 matches the signature in Listing 2, we can explicitly ascribe the
structure to the signature.
structure Stack1 : STACK = Stack;
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This constrains the structure to satisfy the signature [6][p. 269]. That is, if the structure does not
implement every function and specify each abstract type, the code won’t compile.
However with this approach, the internal data type of the Stack (i.e. ’a list) is still exposed. We can
prevent this from using the opaque ascription :> instead of the transparent ascription : [6][p. 269-
270].
structure Stack1 :> STACK = Stack;

With this change, the internal types of the structure are now hidden and only the abstract types of
the signature, are present to the user of the module. The example from above will result in an error:
- Stack1.push([2,3], 1);;

Error: operator and operand do not agree

1.3 Functors
Functors are functions on modules and are not to be confused with Haskell functors. Functors in
SML are completely separate from the core language and take modules as input to return a new
module. This comes in handy in a number of scenarios, but let’s look at a simple example to clarify
this concept.
Suppose we want to create a module which represents an ordered set. We could yet again use the
builtin list data type to represent a list, but we still run into a problem: We cannot allow the set to
hold any data type. Since we want to create ordered set, we need to make sure, that an order is
defined on the items in the set. Basically we want to constraint the types of elements which the set
can hold to data types that can be ordered.
To achieve this, we start by generating a new signature which defines function, that compares
elements of an arbitrary type t.
datatype order = LT | EQ | GT

s ignature ORDERED =

s ig
type t;

val compare t * t -> order;

end;

With that, we can now write a functor that takes a structure which matches our ORDERED signature
and generates a new structure that represents a sorted set. For the comparison of the elements, we
use the compare function from the ORDERED signature.
functor GenOrderedSet (O : ORDERED) =

s t ruc t
exception E

type elem = O.t

type set = elem list

val empty = []

fun add([], x) = ...

fun remove ([], x) = ...

fun contains ([], x) = ...

end;

Yet again, this use of a functor can be thought of as a constraint, i.e. the functor will provide
an ordered set of elements type t, iff one explicitly provides an order for type t. This is similar
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to Haskell type classes, with the key difference, that Haskell automatically passes the correct
implementation for a type while the module needs to be passed explicitly in SML.

2 Java’s module system
With version 9, the Java Platform Module System (JPMS) was introduced with two primary goals
in mind [5].
• Reliable configuration, to replace the brittle, error-prone class-path mechanism with a
means for program components to declare explicit dependences upon one another.
• Strong encapsulation, to allow a component to declare which of its public types are accessible
to other components, and which are not.

This is done by extending the typical package-based modularization approach—which is primarily
used for namespacing—through so-called modules. Similar to how multiple classes or interfaces
can be bundled into packages, Java 9 provides the possibility to bundle multiple packages—and
other data—into modules [2]. However, we will see that the definition of modules in Java is quite
different from modules in SML.
The big new addition is a module-info.java file, which is located at the root of the projects
package hierarchy and contains a module declaration [2, Section 1.1]. With it, we specify the name
of our module, along with additional information to ensure reliable configuration and strong
encapsulation.
Furthermore the module path replaces the class path for modules, i.e. module locations are provided
in the module path as opposed to the class path [2, Section 2.1]. To ensure backwards compatibility,
however, the class path is still available.
A basic example of a module declaration is given in Listing 3. In this case, we only define the name
of the module. In the next two sections, the content will be extended with additional information.

module mymodule {}

Listing 3. "Basic declaration of a module-info.java file"

2.1 Reliable Configuration
Before Java 9 there was no way to declare explicit dependencies between code, directly in the Java
language. Java would just search the classpath and try to find all the imports. One would therefore
place all their dependencies onto the classpath and compile the project. This is typically done by
build assistants like gradle or maven.
With the addition of the module system however, it is not only possible, but necessary to declare
explicit dependencies [2]. This works only at the module level, i.e. a module declares which other
modules it is required to compile and run. With the release of the module system, the JDK itself
was also modularized [2, Section 1.4]. For example java.base contains the base code for the Java
ecosystem, such as the packages java.lang and java.util. It is implicitly required by every other
module, because it is mandatory for the JVM. Other JDK modules include java.sql for SQL related
functionality and java.desktop for UI related tasks.
Suppose we want to access a SQL database in our code, so let’s add the java.sql module to the
dependencies in our module declaration file. We declare our dependency at both compile time and
run time with the requires keyword.

module mymodule {

requires java.sql;

}
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This will ensure that during both compile time and run time, the module is available on the module
path. In other words, the module system is tightly integrated into the java ecosystem with both the
compiler and the JVM being aware of it.

2.2 Strong Encapsulation
Strong encapsulation provides a control mechanism to define which packages are for internal use
and which packages should be exposed to other modules. That is, we can hide our internal code
from outside use at package level.
Let’s suppose we have the following structure in our example module:

module-info.java

org/

example/

base/

Converter.java

internal/

Utils.java

The org package is the root of our package hierarchy. We want to provide the org.example.base
package for external use but keep the org.example.internal package hidden, as this is the
location of the internal code. This code might change in the future and should not be used by
external code. To denote which packages we want to expose for external use, we explicitly declare
them in our module-info.java file. This is done with the exports keyword. Every package we
do not explicitly declare here, can’t be used from outside the module [2, Section 1.1]. This is not
only ensured by the compiler during compile time, but also by the JVM at run time.
It is also possible to denote compile-time-only dependencies with the requires static option,
respectively [1, §7.7.1]. Furthermore the module system does provide the possibility to restrict
reflection access at runtime and an approach to load services. There are many other keywords and
features of the JPMS, which can be read about in the Java Language Specification [1, §7].
module mymodule {

requires java.sql;

exports org.example.base;

}

3 Comparison of Abstraction Capabilities
It is clear that the JPMS and the module system of SML solve different problems.
The JPMS focuses on declaring dependencies and access control, while the SML module system
enables modular programming by grouping related definitions into structures, specifying interfaces
via signatures, and parameterizing modules through functors, which allows for encapsulation
and abstraction [6, p. 313]. In Java, similar functionality is typically achieved using classes to
group related code, interfaces to abstract over implementations and packages for namespace
management.
These OOP concepts map vaguely to the concepts of the SML module system: For example, one
might write the Stack example from Listing 2 in Java as shown in Listing 4. However, there is no
direct mapping to SML functors in Java and abstract types seems to correspond only approximately
to parametric polymorphism.
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import java.util.LinkedList;

in te r face IStack <T>{

void push(T x);

T pop();

boolean empty ();

in t size ();

T peek ();

}

c l a s s Stack <T> implements IStack <T>{

pr ivate f ina l LinkedList <T> elements =

new LinkedList <>();

public void push(T x) {...}

public T peek() {...}

public T pop() {...}

public int size() {...}

}

Listing 4. Stack implementation in Java

Compared to the SML implementation, we use an internal state in the Stack class, representing the
stack as a list. Since the lists are mutable in Java, we do not need to return the data structure after
each modification. Instead we mutate the internal list, following a more OOP-oriented approach.
Similar to the opaque type abstraction in SML, we can also prohibit access on the internal data
structure by declaring the field as private. Furthermore, we use generic type parameters, (i.e.,
<T>) to emulate SML’s abstract types. Compared to the SML approach, the selection of the type is
done at the time of instantiating the Stack class.

4 Conclusion
In this document, a brief comparison between Java’s and SML’s module system was provided. It
is evident that, although they share the name "module system", they solve different problems. It
seems more accurate to compare Java’s OOP concepts like classes, interfaces and packages to
SML’s module system features like signatures, structures and functors. Nonetheless, these
are still distinct abstraction mechanisms and provide different features in some aspects, i.e. there is
no direct comparison to functors in Java.
Another interesting aspect would be to evaluate how abstract types and parametric polymorphism
(i.e. generics) correlate. For further comparison, it would be valuable to look at Scala, another JVM
language. Compared to Java, Scala supports and emphasizes the use of abstract types in addition
to generics, seeming to offer a SML-like abstraction [4, Section 5.2].
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Ein Typsystem für eine deklarative Sprache über
ausführbare Zufallsexperimente

BALTASAR TRANCÓN WIDEMANN, TH Brandenburg / semantics gGmbH, Deutschland

Alea ist eine domänenspezifische deklarative Programmiersprache für Zufallsexperimente. Programme kön-
nen auf zweierlei Arten interpretiert werden; einerseits statisch alsWahrscheinlichkeitsverteilung allermöglichen
Ergebnisse, andererseits dynamisch als pseudozufällige Stichprobe. Alea soll als didaktisches Werkzeug in
der Stochastik-Lehre dienen, als Simulationsumgebung, sowie in Entwurf, Analyse und Implementierung
von Zufallselementen in Spielen. Die Benutzung der Sprache soll zwar elementare Mathematikkentnisse,
aber möglichst wenig Programmiererfahrung erfordern. Im Vortrag wird der Entwurf eines Typsystems
vorgestellt, dass diesen Anforderungen genügt.

Author’s address: Baltasar Trancón Widemann, TH Brandenburg / semantics gGmbH, Brandenburg / Berlin, Deutschland,
trancon@th-brandenburg.de.
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Revising the TeamPlay Coordination Language: JenPlay

ERIC WINTZLER, Friedrich Schiller University Jena, Germany
CLEMENS GRELCK, Friedrich Schiller University Jena, Germany

A relevant branch of today’s computing takes place on cyber-physical systems. On such systems non-functional
properties are as important as functional properties. For lowering the challenge of writing software for
those systems, one can use programming languages which introduce non-functional properties as first-class
citizens. Such a language is TeamPlay. Following the concept of exogenous coordination, TeamPlay models an
application as a directed acyclic graph (DAG) of components communicating via channels.

In this paper, we present the JenPlay coordination language. JenPlay is both a revision and an extension
of the TeamPlay language with the general direction of making the language more expressive and to scale
to larger systems. Focus areas of this work-in-progress presentation are the separation between component
definition and instantiation, the seamless composition of larger DAGs out of previously defined ones and the
structuring of channel lists.

1 INTRODUCTION
It is estimated that 98% of the world’s computing devices operate in embedded or cyber-physical
systems, where non-functional properties of program execution, such as energy (budgets), time
(budgets), security or fault-tolerance can be as crucial as functional correctness. The rise of the
internet-of-things with the edge-fog-cloud computing continuum and the increasing heterogeneity
and parallelism of computing platforms rather solidify than mitigate the need for resource-aware
software. These developments create new challenges for software engineering.
To address this challenge, we proposed the TeamPlay coordination language [11]. TeamPlay

introduces energy, time, security and fault-tolerance as first-class citizens into the software design
and engineering process. Following the concept of exogenous coordination [3], TeamPlay enforces
a stringent software architecture with strict separation of concerns between operational detail and
application-level design.
TeamPlay models an application as directed acyclic graph (DAG) of components. These com-

ponents are connected through channels which servers as communication abstractions between
components. These channels are defined through channel lists. However, this method does not
allow for reusing a component multiple times in the DAG. Furthermore, it is hard to express the
channels in a structured way. To address these uissues, we propose a revision and extension of the
TeamPlay language. To distinguish between TeamPlay and our extension, we call our extension
JenPlay.
We present the basic concepts of TeamPlay alongside with an example program in Section 2.

Based on this, we introduce templates on component and graph level to mitigate the binding of a
component to its position in the DAG in Section 3. In Section 4 we introduce functions as graph
definition entities to allow for a more scalable and structured expression of the DAG. In Section 5
we discuss the related work, while summarising our work in Section 6. After all, we present the
complete JenPlay syntax Appendix A.

2 THE TEAMPLAY COORDINATION LANGUAGE
A TeamPlay application specifies a set of components and how these components are connected
in a directed acyclic graph (DAG). A TeamPlay program consists of three parts. In the first part
application-wide properties – like the overall deadline of the specified program – are specified.

Authors’ addresses: Eric Wintzler, Friedrich Schiller University Jena, Jena, Germany, eric.wintzler@uni-jena.de; Clemens
Grelck, Friedrich Schiller University Jena, Jena, Germany, clemens.grelck@uni-jena.de.
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2 Eric Wintzler and Clemens Grelck

After that, the abstractions of the computation entities are defined as components in the second part.
In the last part, the dependencies between these components are expressed through communication
channels.

An example of a TeamPlay application can be found in Listing 1. It describes the DAG illustrated
in Figure 1. This program defines a simplified train computer of a high-speed railway train. Since
the current position and speed of a train is are important information for a correct operating train
service, our system calculates this information by two independent but exchangeable systems. For
this, we model two source nodes Position and Position2, which determine the current position
of the train. With those positions, the current velocity of the train is calculated by the Speed or
Speed2 components respectively. However, speed is not a value which can be calculated from only
one position as input data. For this, we model our speed components to additionally have a state
port, providing the last position as second input data.

In addition, wemodel a signal on the trackwith the Signal component. This signal is also a source
node connected to the TrainComputer component. The output data of the Signal component
dictates the maximum velocity at which the train is permitted to travel.
The TrainComputer component takes three velocity values as input, interpreting ones from

Speed and Speed2 as the current speed and the one from Signal as target speed of the train.
The TrainComputer sends out status information to the DriverDisplay component and the
Acceleration component through a broadcast link.

The DriverDisplay component is a sink node in the application. It collects the information
coming from the TrainComputer and Acceleration components, presenting them to the train
driver.

The Acceleration component calculates the amount of acceleration the driver should apply to
the train. To inform the driver about that, it sends out the calculated value to the DriverDisplay.
Since the acceleration amount can also be negative, the Acceleration component also sends its
calculated value to the Brake component. Thereby, the Brake component serves as another sink
node of the application.

Position Speed Speed2 Position2

Train
Computer

DriverDisplaySignal Acceleration Brake

• ••

•
• • •

•••

••

• • •

•

•

• •

Fig. 1. The DAG specified by the code presented in Listing 1.

TeamPlay provides the component abstraction to represent computation steps. In Listing 1
components are defined at lines 5 – 33. The interface for input and output data of a component is
defined in terms of named ports (for instance at line 8 of Listing 1). Additionally, ports define the
type of data they expect or provide.
In TeamPlay components are defined as stateless computation abstractions. However, there

might be applications which require some sort of state. To allow for expressing such applications
in TeamPlay, a third set of ports can be defined – so-called state ports. These ports are defined in
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1 app TrainController {
2 deadline 50Hz
3 period 50Hz
4 components {
5 Position { outports { position_t hectometer } }
6 Position2 { outports { position_t position } }
7 Speed {
8 inports { position_t position }
9 outports { int velocity }
10 state { position_t old_position }
11 }
12 Speed2 {
13 inports { position_t position }
14 outports { int velocity }
15 state { position_t old_position }
16 }
17 Signal {
18 outports { int target_velocity }
19 }
20 DriverDisplay {
21 inports { status_t current_speed; float acceleration }
22 }
23 Acceleration {
24 inports { status_t target_speed }
25 outports { float acceleration; int braking_power }
26 }
27 TrainComputer {
28 inports { int current_speed_1; int current_speed_2; int target_speed }
29 outports { status_t status }
30 }
31 Brake {
32 inports { int power }
33 }
34 }
35 channels {
36 TrainComputer.status -> DriverDisplay.current_speed & Acceleration.target_speed
37 Position -> Speed.position
38 Speed.velocity -> TrainComputer.current_speed_1
39 Acceleration.acceleration -> DriverDisplay.acceleration
40 Signal.target_velocity -> TrainComputer.target_speed
41 Position2.hectometer -> Speed2
42 Acceleration.breaking_power -> Brake.power
43 Speed2 -> TrainComputer.current_speed_2
44 }
45 }

Listing 1. A simplified train control system in TeamPlay

Listing 1 at line 15. State ports are input and output ports at the same time, short-circuited from
the output to input.
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TeamPlay is designed for cyber-physical systems. In such systems the non-functional properties
of an application are as important as its functional correctness. To express non-functional contracts
concerning time, energy and security, one can also define settings for a component.

However, sometimes a functional contract can be fulfilled in different ways. To allow for selecting
the best fitting variant of a component under given optimisation objectives and constraints for non-
functional properties, TeamPlay introduces a multi-version feature. With this, multiple versions of a
component can be defined, each of them having different non-functional properties. Thereby each
version fulfils the same functional contract. With this, the versions of a component are semantically
exchangeable.
To express exchange of data between components, TeamPlay provides the channel abstraction.

Channels are defined through channel lists. Thereby each channel is described in the form <source>
-> <sinks>, connecting the specified output port of one component to the specified input ports of
other components. Examples of channel definitions can be seen in Listing 1 at lines 36 – 42.

In TeamPlay multiple types of connections can be expressed, as illustrated in Figure 2. The most
elementary connection type is a point-to-point connection (pipeline) from an output port of one
component to an input port of another component, as illustrated in Figure 2a.

A pipeline connection can be extended to a broadcast connection, as illustrated in Figure 2b. In a
broadcast connection, one component simultaneously sends the same data items to all its connected
components. An example of a broadcast connection can be seen in Listing 1 at line 36.

A B•x •y

(a) A pipeline connection.

A •x

B•y

C•z

•

(b) A broadcast connection.

Fig. 2. The communication paradigms natively supported by TeamPlay.

3 COMPONENT TEMPLATES
One limitation of TeamPlay is that one can not express that a component defined once can be
reused. To illustrate this limitation and its background, we refer to the example of Listing 1 and
Figure 1. We further assume that the components Speed and Speed2 perform the same computation
and therefore are equivalent. Because of this, we would like to delete Speed2 and simplify the edges
of our DAG through (implicitly) reusing the component Speed as in Listing 2.

One may assume, that the code of Listing 2 would lead to the DAG depicted in Figure 3. However,
in Listing 1 we connect the output port of the Signal component to the second input port of
TrainComputer at line 41 through a pipeline connection. Additionally, we connect the output port
of Position2 to the Signal component we want to omit.

In Listing 2, the objective is to connect the output of our copied Speed component to the second
input port of the TrainComputer component. However, there is only one component named Speed
defined. Since we use the component names for expressing the connections between them, the
compiler can not identify that we want to create a copy of Speed and would therefore connect
the outgoing edge of Position with the input port of the existing Speed component. Additionally,
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1 app TrainController {
2 deadline 50Hz
3 period 50Hz
4 components {
5 Position {...}
6 Position2 {...}
7 Speed {
8 inports { position_t position }
9 outports { int velocity }
10 state { position_t old_position}
11 }
12 Signal {...}
15 DriverDisplay {...}
18 Acceleration {...}
22 TrainComputer {...}
26 Brake {...}
29 }
30 channels {
. . . ...
36 Speed.velocity -> TrainComputer.current_speed_1
37 Speed.velocity -> TrainComputer.current_speed_2
38 Position2.hectometer -> Speed
39 }
40 }

Listing 2. A first approach on reusing the Speed component

Position Speed Speed Position2

Train
Computer

DriverDisplaySignal Acceleration Brake

• ••

•
• • •

•••

••

• • •

•

•

• •

Fig. 3. What Listing 2 should express. The implicitly copied Speed component is highlighted.

we would get a second connection from the output port of Speed going to the second input
port of TrainComputer. With this we obtain the DAG illustrated in Figure 4. However, this is a
contradiction to what we want to express. Because of this, we say that components are bound to
their position in the DAG.
In many general-purpose programming languages, the problem of reusing defined structures

is solved through some kind of template mechanism. With this, a separation between definition
and instantiation of a structure can be achieved. In combination with inheritance mechanisms,
templating also allows programmers to express relationships between such definitions.

For defining templates, JenPlay introduces a new section in the JenPlay DSL, next to the sections
for defining components and the channels. Within this part, we distinguish between two types of
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Position Speed Position2

Train
Computer

DriverDisplaySignal Acceleration Brake

• ••

•
• • •

•

••

• • •

•

•

•

Fig. 4. What Listing 2 actually does express.

templates: component templates and network templates. Component templates are abstract definitions
of a single component while network templates are abstractions of a DAG of components.

3.1 Component Templates
A component template is a set of properties (ports, settings and versions) that can be used as (partial)
definition of a component. On the syntactic level, defining a template is similar to defining a
component, but within the new templates section. With this, a template can specify ports as well
as settings or versions of a component.

To allow for a flexible definition of components, we allow templates to be parametrised. For this,
the parameters of a template are written in angular brackets after the name of the template. These
parameters can then be used at any position in the template definition, where not a keyword is
expected.

To apply a template to a component, the keyword extends, followed by the name of the template,
has to be written after the components name. The effect of applying a template is, that everything
defined in the template is now defined for the component instance. For parametrised templates,
additionally the actual values of all parameters must be defined within angular brackets after the
name of the template. With this, every occurrence of the parameter in the template definition is
replaced by the specified value through textual substitution.

As an example of using templates we refer again to Listing 1 with the aim of replacing the Signal
component through reusing the Speed component. For this, we define a template named Velocity
and apply it to the components Speed and Signal. The resulting code is presented in Listing 3.
By applying a template to a component, templates can also be extended – as illustrated by the

Speed and Speed2 components in Listing 3. For this, the component, to which the template is
applied to, also defines ports, settings or versions for itself. The effect of extending a template is in
general, that the ports, settings and versions defined in the template are merged together with the
ones defined in component.
If for a component and its instantiated template defining different ports, settings and versions

are defined, we can simply merge them together. However, if – for instance – for a component
an output port is defined and for the template, the component instantiates, another output port
is defined, we merge the lists of output ports. However, if both ports are of equal names, we are
merging the list of output ports by only using the port defined for the component. This strategy is
applied to the merging of all ports and settings.
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1 app TrainController {
2 deadline 50Hz
3 period 50Hz
4 templates {
5 Velocity<in_type, out_type> {
6 inports { in_type position }
7 outports { out_type velocity }
8 }
9 }
10 components {
. . . ...
13 Speed extends Velocity<position_t, int> {
14 state { position_t old_position }
15 }
16 Speed2 extends Velocity<position_t, int> {
17 state { position_t old_position }
18 }
. . . ...
36 }
37 channels {
. . . ...
46 }
47 }

Listing 3. The simplified train control system with the usage of templates

Components can define multiple versions of themselves. However, one version can define several
settings. Because of this, we have to adopt our merging strategy to this. For this, we are also
merging versions by merging the settings of equal named versions together.

3.2 Network Templates
With introducing component templates one can specify multiple instances of a component without
specifying it multiple times. However, for networks with repetitive elements one still must define
the component instances and the connections between them for every repetition. To reduce the
necessary amount of code duplication, JenPlay introduces templates also on graph level, which are
called network templates.
As an example we refer to Listing 1 again. As one can see in Figure 5, parts of the graph are

equivalent (boxed in grey) and can therefore be replaced by a network template application. For
this we define a new network template called Velocity in Listing 4. This takes place within
the templates section of a JenPlay application. To distinguish between component and network
templates also on syntactic level, network templates start with the network keyword, followed by
the name of the template.
To define a network template, one must define at least one component within the network

template definition. Thereby, the components can be completely defined in place (lines 10 – 13)
or by extending a component template (line 9). For a template to be a network template also the
connections between the internally defined components must be specified. This is shown at lines 14
– 16 of Listing 4. For specifying the internal connections, a network template contains a channels
section for specify the connections within this network. This section is syntactical equivalent to
channel specification of the application outside the templates.
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Position Speed Speed2 Position2

Train
Computer

DriverDisplaySignal Acceleration Brake

• ••

•
• • •

•••

••

• • •

•

•

• •

Fig. 5. The example DAG with highlighting where network templates will be used.

1 app TrainController {
2 deadline 50Hz
3 period 50Hz
4 templates {
5 Location {
6 outports { position_t hectometer }
7 }
8 network Velocity {
9 Position extends Location { }
10 Speed {
11 inports { position_t position }
12 outports { int velocity }
13 state { position_t old_position }
14 }
15 channels {
16 Position.hectometer -> Speed.position
17 }
18 }
19 }
20 components {
21 NewSpeed1 implements Velocity { }
22 NewSpeed2 implements Velocity { }
. . . ...
40 }
41 channels {
42 NewSpeed1.velocity -> TrainComputer.curr_speed
43 NewSpeed2.velocity -> TrainComputer.target_speed
. . . ...
48 }
49 }

Listing 4. The simplified train control system using network templates

A network template is instantiated as a component. This is done within the components section
of a JenPlay application. Our aim is to keep the syntax of JenPlay as simple as possible. Therefore,
we do not allow to extend network templates.
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To instantiate a network template, one must specify the name of the component to create. This
is followed by the implements keyword and the name of the template to instantiate. In Listing 4
this is done at lines 20 and 21.

Instantiating a network template creates a component which offers the unbound input and output
ports of the templates inner components as interface to the components outside the template. In
the example of Listing 4, this means, that the components CurrentSpeed and TargetSpeed are
both offering an output port named velocity, as this is the only unbound input or output port in
the Velocity network.

An instantiated network template can be used like a normal component in the definition of the
applications channels. In the example of Listing 4 this is done at lines 45 – 46. Here, the output ports
of the instantiated templates are connected to the input ports of the TrainComputer component.
This leads to the DAG illustrated in Figure 6.

Position Speed Signal Position2

Train
Computer

DriverDisplaySignal Acceleration Brake

• ••

•
• • •

•••

••

• • •

•

•

• •

NewSpeed1 NewSpeed2

• •

Fig. 6. The DAG expressed by Listing 4. The internal components of each subnet are shown in grey.

4 STRUCTURING GRAPH DEFINITION
To express the DAG, TeamPlay uses channel lists as described in Section 2. While this is a highly
expressive but simple way of describing edges of a graph, it is an unstructured approach of defining
a graph. With this, it is error-prone to structure the code describing the DAG. To introduce a
stronger internal structure of the channel lists, we define a function-like notation for describing
the channels.

TeamPlay allows for expressing the two communication paradigms illustrated in Figure 2: pipeline
and broadcast. In addition, one can build two other communication types out of a pipeline connec-
tion, as illustrated in Figure 7. First, a pipeline connection can be extended to a fork connection.
This is a connection where one component sends different data to each of the connected receiver
components, as illustrated in Figure 7a. Second, with specifying multiple components each sending
data to a different input port of another component, one can also define a join connection. This is a
connection where multiple source sender components are sending data to one receiver component,
as illustrated in Figure 7b.
To allow for expressing all of these communication paradigms, we introduce four instructions,

each describing one communication paradigm. All of these instructions have in common, that they
accept two parameters. These parameters will be called channel ends. Thereby a channel end can
be the name of a component, the ID of a port or another communication instruction. However, the
concrete syntax and semantics differs between the paradigms.
• Point-to-Point Connections. A point-to-point connection – or pipeline connection – (see

Figure 2a) is expressed via the pipe function. This function builds up a simple point-to-point
connection between the two specified channel ends.
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A
•x
•y

B•z

C•q

(a) A fork connection.

A•x
•y

B •z

C •q

(b) A join connection.

Fig. 7. The communication paradigms that can be expressed through multiple pipelines.

• Broadcast Connections. In a broadcast connection (see Figure 2b) the sender sends the
same message to all participants. In JenPlay this is expressed through the broadcast
function. This function requires the first parameter (the sender) to be a single channel end
while the second parameter (the receiver) must be a list of channel ends with at least one
element.
• Fork Connections. A fork connection splits up the data stream from one component to
multiple receivers (see Figure 7a). In JenPlay this is expressed through the fork function.
This function requires the first parameter to be a component identifier and the second
parameters a list of channel ends. Since this function splits up the output stream of a single
component, it is required that the component specified as first parameter specifies as many
output ports as channel ends specified in the second parameter.
• Join Connections. A join connection merges the data streams from multiple components

in a single component (see Figure 7b). In JenPlay this is expressed through the join function.
This function requires the first parameter to be a list of channel ends and the second one
to be an identifier of a component. Since this function merges data streams into a single
component, it is required that the input component specified by the second parameter has
as many input ports as channel ends are specified by the first parameter.

Two examples of how to use these instructions can be found in Listing 5 and in Listing 6. These
examples are modelling the same DAG as Listing 4. Therefore, we assume that the definition of
the components and templates are equal throughout these examples. In addition, both listings are
expressing the same DAG. The only difference between them is, that Listing 5 is only using pipeline
and broadcast communications. In contrast, Listing 6 makes also use of fork and join connections.
As a result we have replaced four pipeline connections by two complex connections.

By allowing a channel end to be also a communication instruction, all the communication
functions can be nested. With this, the channel ends of a function can be replaced by another
function call. Using this feature leads to a more graphical structure of the DAG in the source code.

In the definition above, the fork and join functions are mapping a list of ports to a component
or vice versa. This introduces the problem of how such a mapping can be defined unambiguously,
since the functions do not provide any knowledge of that. To solve this problem, we use the ordering
of the port definitions for the component and the list of channel endpoints. With this, we map
the first port defined for the component to the channel endpoint defined first and so on. However,
this adds the implicit requirement, that the types of the ports mapped with this method must be
compatible.
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1 app primes {
2 deadline 50Hz
3 period 50Hz
4 templates {

. . . ...
18 }
19 components {
. . . ...
39 }
40 channels {
41 pipe(Signal.target_velocity, TrainComputer.target_speed)
42 pipe(NewSpeed1.velocity, TrainComputer.current_speed_1)
43 pipe(NewSpeed2.velocity, TrainComputer.current_speed_2)
44 broadcast(TrainComputer, [DriverDisplay.curr_speed, Acceleration])
45 pipe(Acceleration.acceleration, DriverDisplay.acceleration)
46 pipe(Acceleration.braking_power, Brake.power)
47 }
48 }

Listing 5. The exemplified train control system using the new channel notation

1 app primes {
2 deadline 50Hz
3 period 50Hz
4 templates {

. . . ...
18 }
19 components {
. . . ...
39 }
40 channels {
41 join(
42 [
43 NewSpeed1.velocity,
44 NewSpeed2.velocity,
45 Signal.target_velocity
46 ],
47 TrainComputer
48 )
49 broadcast(TrainComputer, [DriverDisplay.curr_speed, Acceleration])
50 fork(Acceleration, [DriverDisplay.acceleration, Brake])
51 }
52 }

Listing 6. The exemplified train control system using the new channel notation

5 RELATEDWORK
Reo [2, 3] is a coordination model focussed on how components can be connected. Reo mainly
focusses on various types of connecting channels through connectors. For this, Reo defines a
channel as a named connection between exactly two components and thus the atomic form of a
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connector. Thereby each channel end can be connected to at most one component. With knowledge
of the names of the channel ends one can perform several operations on this channel. Especially,
one can add or remove components from the channel, building up n-way connectors between
components. Since those operations can be spread over the whole program code, the channel
definition is not inherently structured. In contrast to JenPlay, Reo channels (and thus connectors)
are not directed. However, the channel ends assigned to the components are directed.
S-Net [7] is a coordination language for asynchronous stream processing. In S-Net the compo-

nents are composed to networks through operators. For this S-Net provides operators for serial
compositions (pipeline) and parallel compositions (fork and join together) as well as for serial and
indexed parallel replication. In contrast to JenPlay, all components are of Single-In-Single-Out
(SISO) type. With this, components must have only one input and only one output port. This
allows for defining components only by their input and output type. Like JenPlay, S-Net enforces a
separation of the definitions of the components from the definitions of the connections between
the components.

CAPIO-CL [12] is a coordination language for file-based I/O-streams on HPC workflows. Instead
of defining a new programming language, CAPIO-CL uses JSON for expressing the components
and channels. In contrast to JenPlay, channels in CAPIO-CL are not explicitly defined. Instead,
channels are defined implicitly through the files a component reads as input or writes as output.
Thereby, multiple files can be grouped together under a common name. The names of these groups
are then used to define the inputs and outputs of the components. Having the same file or group
name in an input and output of a component implicitly creates a channel.

Curracurrong [8] is both, a stream programming environment for wireless sensor networks and
a query language for such systems. An application written in Curracurrong is also defined through
specifying a graph. In contrast to JenPlay, the components and channels are specified through
so-called queries. These queries are defined through operators, determining the type of stream
transformation. Thereby five operators are presented: one for selecting source nodes and one for
selecting sink nodes as well as operators for describing filters, splits (forks) and joins. With this, a
stream graph in Curracurrong is not described by defining the components and their connections,
but through combining the described operators to a query. Thereby, the operators are annotated
with attributes to allow for a fine-grained description of the graph.

FastFlow [1] andWindFlow [9] are stream processing languages for multicore architectures. They
describe a stream processing application as a DAG, too. In contrast to JenPlay and the approaches
discussed before, those languages are no stand-alone languages but highly integrated into the
C++ programming language: components and channels are defined as C++ classes. While each
component is defined as its own class, the channels are predefined in the FastFlow or WindFlow
library. In particular there exists classes for pipelines and broadcasts as well as for forks and joins.
The components are then added to the channels through invocation of the channels member
functions. With this, one could achieve a separation between component and channel definitions
like in JenPlay. However, this separation is not as strictly enforced as in JenPlay.
CAPH [14, 15] is a dataflow programming language for configurable hardware. It is built from

two layers: an actor description language (ADL) and a network description language (NDL). In the
ADL the components are defined through ports for input and output data as well as a description
of the components internal computations. The channels in CAPH are defined in the NDL. This is a
small, higher-order, purely functional language, which describes the channels through defining
and applying so-called wiring functions. These functions are describing how the components are
connected to channels. This approach of using a functional notation for connecting the components
is similar to JenPlay.
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StreamIt [16] is a programming language designed to provide high-level abstractions for stream-
ing applications and to serve as common machine language for grid-based processors. StreamIt
programs are expressed as a DAG in a Java-like syntax. StreamIt uses the object-oriented approach
as described for FastFlow and WindFlow to describe the DAG. With this, components and channels
are defined in terms of classes. Thereby, the classes for the channels are derived from a set of pre-
defined classes. These predefined classes allow for expressing pipeline connections (with multiple
stages), SplitJoin connections (a fork followed by a join at the end) and FeedbackLoop connections.
Thereby the FeedbackLoop can be compared to JenPlays stateful components. In contrast to JenPlay,
StreamIt does not allow for expressing a stand-alone fork or join connection. Fork and join must
always occur in combination through a SplitJoin. Furthermore in contrast to JenPlay, StreamIt does
not provide a strong separation of describing the computation of an application and its structure
in terms of a graph. In StreamIt components are added to the channels through the invocation of
member functions within the channels’ initialisation function.
Rust-SSP [10] and its successor SPar-Rust [5] are implementing high-level domain-specific

languages for stream parallelism. For this, they are using Rusts built-in macro system. In both
languages, the components are defined as Rust functions or closures. With this, those languages did
not provide a strong separation of computation and structure description as in JenPlay. To connect
the components to a DAG, Rust-SSP and SPar-Rust provide a set of macros. In contrast to JenPlay,
Rust-SSP and SPar-Rust only provide pipeline connectors as well as so-called parallel connectors
which are a fork with an implicit join to the next stage of the computation.

CircuitFlow [4] is a declarative language that describes how data flows through a workflow.
CircuitFlow is a Haskell library describing dataflow applications as a DAG. For this, components
are defined through type classes and thus have no explicit notation of ports. With implementing
a Haskell library, CircuitFlow did not provide a strong separation between computation and
description of the application as JenPlay. In CircuitFlow, the components are connected through
so-called circuit constructors. With those constructors one can express pipeline and broadcast as
well as fork and join connections.

AADL [6] is a modelling language supporting early and repeated analyses of a system’s architec-
ture with respect to performance-critical properties. AADL comes with huge set of abstractions for
components, allowing for modularisation of components. However, like in JenPlay components can
define input and output ports. Additionally, as in JenPlay, the connections between the components
are defined in an special syntax. Thereby an output port of one component is connected to an input
port of another component. In contrast to JenPlay, this simple form of creating channels in AADL
only allows for creating a connection between exactly one output and exactly one input port. To
create a connection involving multiple input ports or output ports or mixed directions, one has to
involve another type of communication abstraction.

6 SUMMARY
A relevant number of todays computing is performed on cyber-physical systems. On such systems
non-functional properties are as important as functional properties. To lower the challenge of
writing software for such system, a domain-specific programming language like TeamPlay can be
used. However, TeamPlay has some limitations in terms of programming productivity. In particular
these are the equality of component definition and instantiation as well as the unstructured approach
of defining the connections between those components.
In this paper we present the JenPlay extension to the TeamPlay coordination language. To

overcome the limitation of equality of component definition and instantiation in TeamPlay, JenPlay
introduces component templates as abstract definition of component instances which can be
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extended by the components definitions. To reduce the amount of code duplication, JenPlay also
provides network templates, which can utilised to reuse parts of the DAG.

For allowing a more structured graph definition, JenPlay changes the way of describing the DAG.
Instead of channel lists, JenPlay uses a more graphical description through a function-like syntax.
With this, all participants of a connection are located very close to each other.

Our work will continue in multiple directions. At one side, we work on modelling a number of
use cases with our DSL to validate and possibly refine the design of JenPlay. On the implementation
side, we will develop a compiler for the JenPlay coordination language. This compiler should
generate code for the Lemming runtime system [13].
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A THE JENPLAY SYNTAX
In this appendix, we present the syntax of JenPlay as EBNF rules. For this we use the following
notation:
• Non-Terminal Symbols. Names that are enclosed in angle brackets denote non-terminal
symbols.
• Terminal Symbols. Names that are enclosed in quotation marks denote terminal symbols.
• Grouping. A list of symbols that is placed in brackets denotes a group.
• Options. A list of symbols enclosed in square brackets denote an option.
• Alternative. A | between two symbols or groups denotes that one can choose between the
two alternatives.
• Repetition. A + after an (optional) group or symbol denote, that this group or symbol can
appear one or more times.
• Optional Repetition. A * after an (optional) group or symbol denote, that this group or
symbol can appear zero or more times.
• Differences to TeamPlay. Changes from the original TeamPlay syntax, as presented in [11]
are highlighted in colour.
– Changes coming from the introduction of component templates are highlighted in red.
– Changes coming from the introducing of network templates are highlighted in green.
– Changes coming from the modification of the channel syntax are highlighted in blue.

<App> => "app" <Id> "{" <AppBody> "}"

<AppBody> => ["period" <FrequencyConst>]
["deadline" <FrequencyConst>]
[<Templates>]
<Components>
<Channels>

<Templates> => "templates" "{" (<Template> | <Subnet>)+ "}"

<Template> => <Id> ["<" <ParamList> ">"] "{"
["inports" <PortList>]
["outports" <PortList>]
["state" <PortList>]
[<Settings>]
<Version>*

"}"

<Subnet> => "network" <Id> ["<" <ParamList> ">"] "{"
<Component>+
<Channels>

"}"

<ParamList> => <Id> ("," <Id>)*

<Components> => "components" "{"
(<Component> | <NetworkInst>)*

"}"
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<Component> => <Id> ["extends" <Id> ["<" <ParamList> ">"]] "{"
["inports" <PortList>]
["outports" <PortList>]
["state" <PortList>]
[<Settings>]
<Version>*

"}"

<Setting> => "period" <FrequencyConst>
| "deadline" <FrequencyConst>
| "arch" <StringConst>
| "security" <IntConst>
| "cname" <StringConst>

<Settings> => "{" <Setting> (";" <Setting>)* [";"] "}"

<Version> => "version" <Id> [<Settings>]

<PortList> => "{" <Port> (";" <Port>)* [";"] "}"

<Port> => <Type> <Id> ["[" IntConst "]"]

<NetworkInst> => <Id> "implements" <Id> ["<" <ParamList> ">"] "{" "}"

<Channels> => "channels" "{" <Channel>* "}"

<Channel> => <OneToOne> | <Broadcast> | <Fork> | <Join>

<OneToOne> => "pipe" "(" <ChannelEnd> "," <ChannelEnd> ")"

<Broadcast> => "broadcast" "(" <ChannelEnd> "," <ChannelEndList> ")"

<Fork> => "fork" "(" <Id> "," <ChannelEndList> ")"

<Join> => "join" "(" <ChannelEndList> "," <Id> ")"

<ChannelEndList> => "[" <ChannelEnd> ("," <ChannelEnd>)* "]"

<ChannelEnd> => <Channel> | <PortId>

<PortId> => <Id> ["." <Id>]

<FrequencyConst> => <IntConst> "Hz"
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